精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex-ex,则f(x)的单调减区间为
 
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:令f′(x)≤0,解出即可.
解答: 解:f′(x)=ex-e,
令f′(x)≤0,解得x≤1.
∴f(x)的单调减区间为(-∞,1].
故答案为:(-∞,1].
点评:本题考查了利用导数研究函数的单调性,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(α)=
tan(2π-α)sin(π+α)cos(6π-α)
sin(
3
2
π+α)cos(
1
2
π+α)

(1)化简f(α);
(2)若sinα=-
2
2
3
,α∈[-π,-
π
2
],求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=alnx+x2+bx(a,b∈R,a≠0,且x=1为f(x)的极值点.
(1)当a=1时,求f(x)的单调递减区间;
(2)若f(x)=0恰有两解,试求实数a的取值范围;
(3)在(1)的条件下,设g(x)=f(x+1)-x2+x+2,证明:
n
k=1
1
g(k)
3n2+5n
(n+1)(n+2)
(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥的底面边长是4cm,侧棱长是2
3
cm,求它的高与斜高.

查看答案和解析>>

科目:高中数学 来源: 题型:

设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a5+b2=a3+b3=7.
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2|x|,则f(x)(  )
A、在R上是减函数
B、在(-∞,0]上是减函数
C、在[0,+∞)上是减函数
D、在(-∞,+∞)上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

为了解一片防风林的生长情况,随机测量了其中100株树木的底部周长(单位:cm)、根据所得数据画出样品的频率分布直方图(如图),那么在这100株树木中,底部周长大于100cm的株数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在x∈[0,+∞﹚上是增函数,且f(
1
2
)=0,求不等式f(logax)>0(a>0且a≠1)的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
xm2+m+1
(m∈N*)的定义域是
 
,奇偶性为
 
,单调递减区间是
 

查看答案和解析>>

同步练习册答案