精英家教网 > 高中数学 > 题目详情
如图,P为60°的二面角α-l-β内一点,P到二面角两个面的距离分别为2、3,A、B是二面角的两个面内的动点,则△PAB周长的最小值为
 
考点:与二面角有关的立体几何综合题
专题:计算题,空间角
分析:作出P关于两个平面α,β对称点M、N,连接MN,线段MN与两个平面的交点坐标分别为C,D,连接MP,NP,由已知条件推导出△PAB周长L=PM+PN+MN=AM+MN+BN,当A与C重合,B与D重合时,由两点之间线段最短可以得出MN,即为△PAB周长的最小值.
解答: 解:如图,作出P关于两个平面α,β的对称点M、N,连接MN,
线段MN与两个平面的交点坐标分别为C,D,连接MP,NP,CP,DP,
则△PAB的周长L=PA+PB+AB=AM+AB+BN,当A与C重合,B与D重合时,
由两点之间线段最短可以得出MN即为△PAB周长的最小值,
根据题意可知:P到二面角两个面的距离分别为2、3,
∴MP=4,NP=6,
∵大小为60°的二面角α-l-β,
∴∠EOF=60°,
∴∠MPN=120°,
根据余弦定理有:
MN2=MP2+NP2-2MP•NP•cos∠MPN=42+62-2×4×6×(-
1
2
)=76,
∴MN=2
19

∴△PAB周长的最小值等于2
19

故答案为:2
19
点评:本题考查三角形周长的最小值的求法,注意运用对称的方法,同时考查二面角的定义和求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,∠ADC=90°,且CD=2,AD=
2
,AB=PD=1,E在线段PC上移动,且
PE
PC

(1)当λ=
1
3
时,证明:直线PA∥平面EBD;
(2)是否存在λ,使面EBD与面PBC所成二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若圆锥的轴截面是正三角形,则它的侧面积是底面积的(  )
A、4倍
B、3倍
C、
2
D、2倍

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点的椭圆C的右焦点为(
3
,0),右顶点为(2,0),
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+
2
与椭圆C恒有两个不同的交点A和B,且
OA
OB
>2(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x2-2ax+b,当时x=-1时,f(x)取最小值-8,记集合A={x|f(x)>0},B={x||x-t|≤1}
(Ⅰ)当t=1时,求(∁RA)∪B;
(Ⅱ)设命题P:A∩B≠∅,若¬P为真命题,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在医学生物学试验中,经常以果绳作为试验对象,一个关有4只果绳的笼子里,不慎混入了两只苍蝇(此时笼内共有6只蝇子:4只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔,以ξ表示笼内还剩下的果蝇的只数.
(Ⅰ)写出ξ的分布列(要求写出计算过程);
(Ⅱ)求数学期望Eξ;
(Ⅲ)求概率P(ξ>Eξ).

查看答案和解析>>

科目:高中数学 来源: 题型:

(理做)已知函数f(x)=
1
x-1
-lnx,函数y=f(|x|)的零点个数为n,则n=(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设x,y∈R,向量
a
=(x,1),
b
=(1,y),
c
=(2,-4),且
a
c
b
c
,求|
a
+
b
|和
a
+
b
c
的夹角;
(2)设0为△ABC的外心,已知AB=3,AC=4,非零实数x,y满足
AO
=x
AB
+y
AC
且x+2y=1,则cos∠BAC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列式子正确的是(  )
A、
AB
-
AC
=
BC
B、
a
•(
b
c
)=(
a
b
)•
c
C、λ(μa)=(λμ)
a
D、
O
AB
=
O

查看答案和解析>>

同步练习册答案