精英家教网 > 高中数学 > 题目详情
已知函数在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.
(1)证明a>0;(2)若z=a+2b,求z的取值范围.
【答案】分析:(1)求出f(x)的导函数,因为函数在x=x1和x=x2取得极值得到:x1,x2是导函数等于0的两个根.表示出导函数,因为x<x1函数为增函数,得到导函数大于0,根据不等式取解集的方法即可得到a的范围;
(2)由0<x1<1<x2<2得到导函数在x=0、2时大于0,导函数在x=1时小于0,得到如图所示的三角形ABC,求出三个顶点的坐标即可得到相应的z值,得到z的取值范围即可.
解答:解:求出函数f(x)的导函数f'(x)=ax2-2bx+2-b.
(1)由函数f(x)在x=x1处取得极大值,
在x=x2处取得极小值,知x1,x2是f'(x)=0的两个根.
所以f'(x)=a(x-x1)(x-x2
当x<x1时,f(x)为增函数,f'(x)>0,
由x-x1<0,x-x2<0,得a>0.
(2)在题设下,0<x1<1<x2<2等价于

化简得
此不等式组表示的区域为平面aOb上三条直线:2-b=0,a-3b+2=0,4a-5b+2=0.
所围成的△ABC的内部,其三个顶点分别为:
z在这三点的值依次为
所以z的取值范围为
点评:本题考查学生会利用导数研究函数的极值,会利用数形结合法进行简单的线性规划.在解题时学生应注意利用数形结合的数学思想解决问题.
练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年福建省三明市尤溪一中高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

已知函数在x=1处取得极值2.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数f(x)在区间(t,2t+1)上是单调函数,求实数t的取值范围;
(Ⅲ)设函数g(x)=x2-2ax+a,若对于任意的x1∈R,总存在x2∈[-1,1],使得g(x2)≤f(x1),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆市南开中学高三总复习数学试卷(6)(解析版) 题型:解答题

已知函数在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.
(1)证明a>0;(2)若z=a+2b,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学精品复习25:导数的应用(解析版) 题型:解答题

已知函数在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.
(1)证明a>0;(2)若z=a+2b,求z的取值范围.

查看答案和解析>>

科目:高中数学 来源:2007年全国统一高考数学试卷Ⅱ(文科)(解析版) 题型:解答题

已知函数在x=x1处取得极大值,在x=x2处取得极小值,且0<x1<1<x2<2.
(1)证明a>0;(2)若z=a+2b,求z的取值范围.

查看答案和解析>>

同步练习册答案