精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow a=(cos(\frac{π}{3}+α),1)$,$\overrightarrow b=(1,4)$,如果$\overrightarrow a$∥$\overrightarrow b$,那么$cos(\frac{π}{3}-2α)$的值为$\frac{7}{8}$.

分析 利用两个向量共线的性质,诱导公式,求得sin($\frac{π}{6}$-α)的值,再利用二倍角公式求得 $cos(\frac{π}{3}-2α)$=1-2${sin}^{2}(\frac{π}{6}-α)$ 的值.

解答 解:∵向量$\overrightarrow a=(cos(\frac{π}{3}+α),1)$,$\overrightarrow b=(1,4)$,$\overrightarrow a$∥$\overrightarrow b$,
∴cos($\frac{π}{3}$+α)•4-1•1=0,求得cos($\frac{π}{3}$+α)=$\frac{1}{4}$,
即sin($\frac{π}{2}$-$\frac{π}{3}$-α)=$\frac{1}{4}$,即sin($\frac{π}{6}$-α)=$\frac{1}{4}$,
∴$cos(\frac{π}{3}-2α)$=1-2${sin}^{2}(\frac{π}{6}-α)$=1-2•$\frac{1}{16}$=$\frac{7}{8}$,
故答案为:$\frac{7}{8}$.

点评 本题主要考查两个向量共线的性质,诱导公式,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知f(x)是定义在R上的函数,若方程f(f(x))=x有且仅有一个实数根,则f(x)的解析式可能是(  )
A.f(x)=|2x-1|B.f(x)=exC.f(x)=x2+x+1D.f(x)=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.二维形式的柯西不等式:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时取等号.
(1)证明二维形式的柯西不等式;
(2)利用柯西不等式,求函数y=3$\sqrt{x-1}$+$\sqrt{20-4x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.l1、l2是空间两条直线,α是平面,以下结论正确的是(  )
A.如果l1∥α,l2∥α,则一定有l1∥l2B.如果l1⊥l2,l2⊥α,则一定有l1⊥α
C.如果l1⊥l2,l2⊥α,则一定有l1∥αD.如果l1⊥α,l2∥α,则一定有l1⊥l2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若关于x,y的方程组$\left\{{\begin{array}{l}{ax+y-1=0}\\{4x+ay-2=0}\end{array}}\right.$有无数多组解,则实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.若函数f(x)满足:对于任意正数s,t,都有f(s)>0,f(t)>0,且f(s)+f(t)<f(s+t),则称函数f(x)为“L函数”.
(1)试判断函数${f_1}(x)={x^2}$与${f_2}(x)={x^{\frac{1}{2}}}$是否是“L函数”;
(2)若函数g(x)=3x-1+a(3-x-1)为“L函数”,求实数a的取值范围;
(3)若函数f(x)为“L函数”,且f(1)=1,求证:对任意x∈(2k-1,2k)(k∈N*),都有$f(x)-f(\frac{1}{x})>$$\frac{x}{2}-\frac{2}{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为$\frac{2}{3}$和$\frac{3}{5}$.现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立,则至少有一种新产品研发成功的概率为$\frac{13}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤6}\\{x-3y≤-2}\\{x≥1}\end{array}\right.$若目标函数z=ax+by(a>0,b>0)的最小值为2,则$\frac{1}{a}$+$\frac{3}{b}$的最小值为(  )
A.2+$\sqrt{3}$B.5+2$\sqrt{6}$C.8+$\sqrt{15}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若x,y满足不等式$\left\{\begin{array}{l}{x≥2}\\{x+y≤6}\\{x-2y≤0}\end{array}\right.$,则z=x2+y2的最小值是(  )
A.2B.$\sqrt{5}$C.4D.5

查看答案和解析>>

同步练习册答案