【题目】现有一场专家报告会,张老师带甲,乙,丙,丁四位同学参加,其中有一个特殊位置可与专家近距离交流,张老师看出每个同学都想去坐这个位置,因此给出一个问题,谁能猜对,谁去坐这个位置.问题如下:某班10位同学参加一次全年级的高二数学竞赛,最后一道题只有6名同学,,,,,尝试做了,并且这6人中只有1人答对了.听完后,四个同学给出猜测如下:甲猜:或答对了;乙猜:不可能答对;丙猜:,,当中必有1人答对了;丁猜:,,都不可能答对,在他们回答完后,张老师说四人中只有1人猜对,则张老师把特殊位置给了__________.
科目:高中数学 来源: 题型:
【题目】如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.
(1)求证:平面;
(2)若,求二面角的大小;
(3)若线段上总存在一点,使得,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的左、右焦点分别为,,过点的直线与椭圆交于点,,的周长为.
(1)求椭圆的标准方程;
(2)若.①当时,求直线的方程;
②证明是定值,并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是平面直角坐标系中两两不同的四点,若,,且,则称调和分割.已知平面上的点调和分割点,则下列说法正确的是
A. 可能线段的中点
B. 可能线段的中点
C. 可能同时在线段上
D. 不可能同时在线段的延长线上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是菱形,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,∠DAB=60°.
(1)求证:直线AM∥平面PNC;
(2)求二面角D﹣PC﹣N的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照国际乒联的规定,标准的乒乓球在直径符合条件下,重量为2.7克,其重量的误差在区间内就认为是合格产品,在正常情况下样本的重量误差服从正态分布.现从某厂生产的一批产品中随机抽取10件样本,其重量如下:
2.72 2.68 2.7 2.75 2.66 2.7 2.6 2.69 2.7 2.8
(1)计算上述10件产品的误差的平均数及标准差;
(2)①利用(1)中求的平均数,标准差,估计这批产品的合格率能否达到;
②如果产品的误差服从正态分布,那么从这批产品中随机抽取10件产品,则有不合格产品的概率为多少.(附:若随机变量服从正态分布,则,,.用0.6277,用0.9743分别代替计算)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的三内角A,B,C所对的边分别为a,b,c,若cosA=cosB,b=,c=4,M,N是边AC上的两个动点,且AM=2CN,则的最大值为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出的是2017年11月-2018年11月某工厂工业原油产量的月度走势图,则以下说法正确的是( )
A. 2018年11月份原油产量约为51.8万吨
B. 2018年11月份原油产量相对2017年11月增加1.0%
C. 2018年11月份原油产量比上月减少54.9万吨
D. 2018年1-11月份原油的总产量不足15000万吨
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com