【题目】已知函数,是的导函数,.
(1)当时,判断函数在上是否存在零点,并说明理由;
(2)若在上存在最小值,求的取值范围.
【答案】(1)不存在零点,理由见解析;(2)
【解析】
(1)当时,得,对求导,从而得单调性,即可判断零点;
(2)求出的导函数,结合,讨论的单调性,看是否存在最值即可得到答案.
(1)时,.
令,即,,得,
当变化时,,变化如下:
- | 0 | + | |
减 | 最小值 | 增 |
∴函数的单调递减区间为,单调递增区间为.
∴的极小值为.∴函数在上不存在零点.
(2)因为,所以,
令,则.
①当时,,即,
∴在单调递增,
∴时,,
∴在单调递增,∴在不存在最小值,
②当时,,
所以,即在内有唯一解,
当时,,当时,,
所以在上单调递减,在上单调递增.
所以,又因为,
所以在内有唯一零点,
当时,即,
当时,即,所以在上单调递减,在上单调递增.
所以函数在处取得最小值,
即时,函数在上存在最小值.
综上所述,在上存在最小值时,的取值范围为.
科目:高中数学 来源: 题型:
【题目】若数列的每一项都不等于零,且对于任意的,都有(为常数),则称数列为“类等比数列”;已知数列满足:,对于任意的,都有;
(1)求证:数列是“类等比数列”;
(2)若是单调递减数列,求实数的取值范围;
(3)若,求数列的前项之积取最大值时的值;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市《城市总体规划(年)》提出到年实现“分钟社区生活圈”全覆盖的目标,从教育与文化、医疗与养老、交通与购物、休闲与健身个方面构建“分钟社区生活圈”指标体系,并依据“分钟社区生活圈”指数高低将小区划分为:优质小区(指数为)、良好小区(指数为)、中等小区(指数为)以及待改进小区(指数为)个等级.下面是三个小区个方面指标的调查数据:
注:每个小区“分钟社区生活圈”指数,其中、、、为该小区四个方面的权重,、、、为该小区四个方面的指标值(小区每一个方面的指标值为之间的一个数值).
现有个小区的“分钟社区生活圈”指数数据,整理得到如下频数分布表:
分组 | |||||
频数 |
(Ⅰ)分别判断、、三个小区是否是优质小区,并说明理由;
(Ⅱ)对这个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,抽取个小区进行调查,若在抽取的个小区中再随机地选取个小区做深入调查,记这个小区中为优质小区的个数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题P:函数且|f(a)|<2,命题Q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=,
(1)分别求命题P、Q为真命题时的实数a的取值范围;
(2)当实数a取何范围时,命题P、Q中有且仅有一个为真命题;
(3)设P、Q皆为真时a的取值范围为集合S,,若RTS,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程。
已知曲线C:(t为参数), C:(为参数)。
(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线
(t为参数)距离的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,沿河有A、B两城镇,它们相距千米.以前,两城镇的污水直接排入河里,现为保护环境,污水需经处理才能排放.两城镇可以单独建污水处理厂,或者联合建污水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送).依据经验公式,建厂的费用为(万元),表示污水流量;铺设管道的费用(包括管道费)(万元),表示输送污水管道的长度(千米).已知城镇A和城镇B的污水流量分别为、,、两城镇连接污水处理厂的管道总长为千米.假定:经管道输送的污水流量不发生改变,污水经处理后直接排入河中.请解答下列问题(结果精确到):
(1)若在城镇A和城镇B单独建厂,共需多少总费用?
(2)考虑联合建厂可能节约总投资,设城镇A到拟建厂的距离为千米,求联合建厂的总费用与的函数关系式,并求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:
方案一:每天回报元;
方案二:第一天回报元,以后每天比前一天多回报元;
方案三:第一天回报元,以后每天的回报比前一天翻一番.
记三种方案第天的回报分别为,,.
(1)根据数列的定义判断数列,,的类型,并据此写出三个数列的通项公式;
(2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com