【题目】已知函数.
(1)讨论的导函数零点的个数;
(2)若函数的最小值为,求的取值范围.
【答案】(1)见解析;(2) .
【解析】试题分析:(1)先求出,则至少存在一个零点,讨论的范围,利用导数研究函数的单调性,结合单调性与函数图象可得结果;(2)求出,分五种情况讨论的范围,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用函数的单调性,结合函数图象可排除不合题意的的范围,筛选出符合题意的的范围.
试题解析:(1),
令,故在上单调递增,
则,
因此,当或时,只有一个零点;
当或时,有两个零点;
(2)当时,,则函数在处取得最小值,
当时,则函数在上单调递增,则必存在正数,
使得,
若,则,函数在与上单调递增,在上单调递减,
又,故不符合题意.
若,则,函数在上单调递增,
又,故不符合题意.
若,则,设正数,
则,
与函数的最小值为矛盾,
综上所述,,即.
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=3x.
(1)若f(x)=8,求x的值;
(2)对于任意的x∈[0,2],[f(x)-3]3x+13-m≥0恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界.已知函数.
(1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由;
(2)若是上的有界函数,且的上界为3,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 ,直线 (为参数).
(1)写出椭圆的参数方程及直线的普通方程;
(2)设,若椭圆上的点满足到点的距离与其到直线的距离相等,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018河南濮阳市高三一模】已知点在抛物线上, 是抛物线上异于的两点,以为直径的圆过点.
(I)证明:直线过定点;
(II)过点作直线的垂线,求垂足的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程是(是参数),圆的极坐标方程为.
(Ⅰ)求圆心的直角坐标;
(Ⅱ)由直线上的点向圆引切线,求切线长的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com