精英家教网 > 高中数学 > 题目详情

已知f(x)在x∈[a,b]上的最大值为M,最小值为m,给出下列五个命题:①若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,m];②若对任何x∈[a,b]都有p≤f(x),则p的取值范围是(-∞,M];③若关于的方程p=f(x)在区间[a,b]上有解,则p的取值范围是(-∞,M];④若关于的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,m];⑤若关于的不等式p≤f(x)在区间[a,b]上有解,则p的取值范围是(-∞,M];其中正确命题的个数为

[  ]

A.4

B.3

C.2

D.1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=2cos(ωx+θ),(x∈R,0≤θ≤
π
2
)
,g(x)=ex-x2+2ax-1,(x∈R,a为实数),y=f(x)的图象与y轴交于点(0,
3
)
,且在该点处切线的斜率为-2.
(I)若点A(
π
2
,0)
,点P是函数y=f(x)图象上一点,Q(x0,y0)是PA的中点,当y0=
3
2
x0∈[
π
2
,π]
时,求x0的值;
(II)当a>1+ln2时,试问:是否存在曲线y=f(x)与y=g(x)的公切线?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然常数,a∈R.
(1)讨论a=1时,f(x)的单调性、极值;
(2)求证:在(1)的条件下,f(x)>g(x)+
1
2

(3)若f(x)的最小值是3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=lnx,g(x)=
1
2
ax2+3x+1

(Ⅰ)若函数h(x)=f(x)-g(x)存在单调递减区间,求实数a的取值范围;
(Ⅱ)当a=-1时,求证:x≤eg(x)-2x∈[
1
2
5
2
]
成立
(Ⅲ)求f(x)-x的最大值,并证明当n>2,n∈N*时,log2e+log3e+log4e…+logne>
3n2-n-2
2n(n+1)
(e为自然对数lnx的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的函数,且对任意正数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0.
(1)证明f(x)在(0,+∞)上为增函数;
(2)若f(3)=1,集合A={x|f(x)>f(x-1)+2},B={x|f(
(a+1)x-1x+1
)>0,a∈R}
,A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:北京市石景山区2012届高三上学期期末考试数学理科试题 题型:044

已知f(x)=ax-lnx,a∈R.

(Ⅰ)当a=2时,求曲线f(x)在点(1,f(1))处的切线方程;

(Ⅱ)若f(x)在x=1处有极值,求f(x)的单调递增区间;

(Ⅲ)是否存在实数a,使f(x)在区间(0,e]的最小值是3,若存在,求出a的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案