精英家教网 > 高中数学 > 题目详情
10.已知集合A={x|x2-2x-3≥0},B={x|-2≤x≤2},则A∩B=(  )
A.[-2,-1]B.[-1,2]C.[-1,1]D.[1,2]

分析 求出A中不等式的解集确定出A,找出A与B的交集即可.

解答 解:由A中不等式变形得:(x-3)(x+1)≥0,
解得:x≤-1或x≥3,即A=(-∞,-1]∪[3,+∞),
∵B=[-2,2],
∴A∩B=[-2,-1],
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示,在Rt△ABC中,已知A(-2,0),直角顶点$B(0,-2\sqrt{2})$,点C在x轴上.
(1)求Rt△ABC外接圆的方程;
(2)求过点(0,3)且与Rt△ABC外接圆相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.以下说法正确的是(  )
①若x,y∈R,则“x=y“是“$xy≥{(\frac{x+y}{2})^2}$“的充要条件.
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题
③“x2+2x≥ax在x∈[1,2]恒成立”?“对于x∈[1,2],有(x2+2x)min≥(ax)max
④命题“若a=-1,则函数f(x)=ax2+2x-1只有一个零点”的逆命题为真命题.
A.①②B.①②④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U=R,集合A={x|x<a或x>2-a,(a<1)},集合B={x|$tan(πx-\frac{π}{3})=-\sqrt{3}\}$.
(Ⅰ)求集合∁UA与B;
(Ⅱ)当-1<a≤0时,集合C=(∁UA)∩B恰好有3个元素,求集合C.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.正项等比数列{an}的前n项和为Sn,若${a_1}=1,\;{S_3}=\frac{7}{4}$,则a6=$\frac{1}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在$(0\;,\;\frac{π}{2})$上的函数f(x),f'(x)是它的导函数,且恒有f(x)•tanx+f'(x)<0成立,则(  )
A.$\sqrt{2}f(\frac{π}{3})>f(\frac{π}{4})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{6})$C.$f(\frac{π}{3})>\sqrt{3}f(\frac{π}{6})$D.$\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直角坐标平面O-XY上的动点P到定点F(1,0)的距离比它到y轴的距离多1,记P点的轨迹为曲线C,则直线l:2x-3y+4=0与曲线C的交点的个数为(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l:y=$\sqrt{3}$+1,则直线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2x+3,-x)(x∈R),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.-2B.-2或0C.1或-3D.0或2

查看答案和解析>>

同步练习册答案