ÒÑÖªº¯Êýf£¨x£©=xk+b£¨³£Êýk£¬b¡ÊR£©µÄͼÏó¹ýµã£¨4£¬2£©¡¢£¨16£¬4£©Á½µã£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôº¯Êýg£¨x£©µÄͼÏóÓ뺯Êýf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Èô²»µÈʽg£¨x£©+g£¨x-2£©£¾2ax+2ºã³ÉÁ¢£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£»
£¨3£©ÈôP1£¬P2£¬P3£¬¡­£¬Pn£¬¡­ÊǺ¯Êýf£¨x£©Í¼ÏóÉϵĵãÁУ¬Q1£¬Q2£¬Q3£¬¡­£¬Qn£¬¡­ÊÇxÕý°ëÖáÉϵĵãÁУ¬OΪ×ø±êÔ­µã£¬¡÷OQ1P1£¬¡÷Q1Q2P2£¬¡­£¬¡÷Qn-1QnPn£¬¡­ÊÇһϵÁÐÕýÈý½ÇÐΣ¬¼ÇËüÃǵı߳¤ÊÇa1£¬a2£¬a3£¬¡­£¬an£¬¡­£¬Ì½ÇóÊýÁÐanµÄͨÏʽ£¬²¢ËµÃ÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©½«£¨4£¬2£©¡¢£¨16£¬4£©Á½µã×ø±ê´úÈ뺯Êýf£¨x£©=xk+bÖУ¬¼´¿ÉÇó³ök¡¢bµÄÖµ£¬½ø¶øÇóµÃº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÇ°ÃæÇóµÃµÄf£¨x£©µÄ½âÎöʽºÍÌâÖÐÒÑÖªÌõ¼þ¿ÉÖªº¯Êýg£¨x£©µÄ½âÎöʽ£¬Áîg£¨x£©+g£¨x-2£©£¼2ax+2£¬±ã¿ÉÇó³öaµÄÈ¡Öµ·¶Î§£»
£¨3£©¸ù¾ÝÇ°ÃæÇóµÃµÄº¯Êý½áºÏÌâÖÐÒÑÖªÌõ¼þ±ã¿ÉÇó³öanÓëan+1µÄ¹Øϵ£¬±ã¿ÉÇóµÃÊýÁÐanµÄͨÏʽ£®
½â´ð£º½â£º£¨1£©


£¨2£©g£¨x£©=x2£¨x¡Ý0£©
g£¨x£©+g£¨x-2£©£¾2ax+2

Ô­ÎÊÌâµÈ¼ÛÓÚÔÚx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢£¬
ÀûÓú¯ÊýÔÚÇø¼ä[2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¿ÉµÃ£»
£¨3£©ÓÉ£¬
ÓÉ£¬
½«x´úÈ룬
¡àÇÒ£¬
ÓÖ£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º£¬
ÓÖ£¬ÒòΪan£¾0£¬ËùÒÔ£¬
´Ó¶øanÊÇÒÔΪÊ×ÏΪ¹«²îµÄµÈ²îÊýÁУ¬¼´£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯Êý½âÎöʽµÄÇó·¨ÒÔ¼°ÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
¦Ð
2
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A¡¢f(x)=2sin(¦Ðx+
¦Ð
6
)(x¡ÊR)
B¡¢f(x)=2sin(2¦Ðx+
¦Ð
6
)(x¡ÊR)
C¡¢f(x)=2sin(¦Ðx+
¦Ð
3
)(x¡ÊR)
D¡¢f(x)=2sin(2¦Ðx+
¦Ð
3
)(x¡ÊR)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÉîÛÚһģ£©ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•ÉϺ£Ä£Ä⣩ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉϺ£Ä£Äâ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=(
x
a
-1)2+(
b
x
-1)2£¬x¡Ê(0£¬+¡Þ)
£¬ÆäÖÐ0£¼a£¼b£®
£¨1£©µ±a=1£¬b=2ʱ£¬Çóf£¨x£©µÄ×îСֵ£»
£¨2£©Èôf£¨a£©¡Ý2m-1¶ÔÈÎÒâ0£¼a£¼bºã³ÉÁ¢£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£»
£¨3£©Éèk¡¢c£¾0£¬µ±a=k2£¬b=£¨k+c£©2ʱ£¬¼Çf£¨x£©=f1£¨x£©£»µ±a=£¨k+c£©2£¬b=£¨k+2c£©2ʱ£¬¼Çf£¨x£©=f2£¨x£©£®
ÇóÖ¤£ºf1(x)+f2(x)£¾
4c2
k(k+c)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£ºÉîÛÚһģ ÌâÐÍ£º½â´ðÌâ

ÒÑÖªº¯Êýf(x)=
1
3
x3+bx2+cx+d
£¬ÉèÇúÏßy=f£¨x£©ÔÚÓëxÖá½»µã´¦µÄÇÐÏßΪy=4x-12£¬f¡ä£¨x£©Îªf£¨x£©µÄµ¼º¯Êý£¬ÇÒÂú×ãf¡ä£¨2-x£©=f¡ä£¨x£©£®
£¨1£©Çóf£¨x£©£»
£¨2£©Éèg(x)=x
f¡ä(x)
 £¬ m£¾0
£¬Çóº¯Êýg£¨x£©ÔÚ[0£¬m]ÉϵÄ×î´óÖµ£»
£¨3£©Éèh£¨x£©=lnf¡ä£¨x£©£¬Èô¶ÔÒ»ÇÐx¡Ê[0£¬1]£¬²»µÈʽh£¨x+1-t£©£¼h£¨2x+2£©ºã³ÉÁ¢£¬ÇóʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸