精英家教网 > 高中数学 > 题目详情
已知向量
a
=(sinθ,cosθ-2sinθ),
b
=(1,2)

(1)若
a
b
,求tanθ的值;
(2)若|
a
|=|
b
|,(0<θ<π)
,求θ的值;
(3)设
c
=(1,1+2sinθ)
,若f(θ)=|
a
+
c
|2+sin2θ
,求f(θ)的值域.
分析:(1)利用两个向量共线的性质可得 2sinθ=cosθ-2sinθ,由此求得tanθ=
1
4

(2)由|
a
|=|
b
|
,化简可得-sinθcosθ=cos2θ,故 cosθ=0,或 sinθ=-cosθ,由此求得θ的值.
(3)化简f(θ)=3+2(sinθ+cosθ)+sin2θ,令t=sinθ+cosθ,t∈[-
2
2
]
,则 f(t)=t2+2t+2,利用二次函数的性质求出f(θ)的值域.
解答:解:(1)∵
a
b
,∴2sinθ=cosθ-2sinθ,∴tanθ=
1
4

(2)∵|
a
|=|
b
|
,∴sin2θ+(cosθ-2sinθ)2=5,化简可得-sinθcosθ=cos2θ,
∴cosθ=0,或 sinθ=-cosθ.
再由 0<θ<π 可得  θ=
π
2
4

(3)f(θ)=(sinθ+1)2+(cosθ+1)2+sin2θ
=3+2(sinθ+cosθ)+sin2θ,
令t=sinθ+cosθ,t∈[-
2
2
]
,则有f(t)=t2+2t+2,利用二次函数的性质可得当t=-1时,f(t)有最小值1,当t=
2
时,f(t)有最大值4+2
2

f(t)∈[1,4+2
2
]
,故f(θ)的值域为 [1,4+2
2
]
点评:本题主要考查两个向量共线的性质,两个向量坐标形式的运算,二次函数的性质应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,
3
)
b
=(1,cosθ)
θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表达式.
(2)用“五点作图法”画出函数f(x)在一个周期上的图象.
(3)写出f(x)在[-π,π]上的单调递减区间.
(4)设关于x的方程f(x)=m在x∈[-π,π]上的根为x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,则sin2θ+cos2θ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此结论求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin(x-
π
4
),-1)
b
=(2,2)
f(x)=
a
b
+2

①用“五点法”作出函数y=f(x)在长度为一个周期的闭区间的图象.
②求函数f(x)的最小正周期和单调增区间;
③求函数f(x)的最大值,并求出取得最大值时自变量x的取值集合
④函数f(x)的图象可以由函数y=sin2x(x∈R)的图象经过怎样的变换得到?
⑤当x∈[0,π],求函数y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作图
精英家教网

查看答案和解析>>

同步练习册答案