精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)求函数的定义域;

(2)判断函数的奇偶性。

【答案】(1){x|﹣1<x<1}(2)偶函数

【解析】

(1)要求函数f(x)+g(x)的定义域,我们可根据让函数解析式有意义的原则,构造不等式组,解不等式组即可得到函数f(x)+g(x)的定义域;

(2)要判断h(x)=f(x)+g(x)的奇偶性,我们根据奇偶性的定义,先判断其定义域是否关于原点对称,然后再判断f(﹣x)+g(﹣x)与f(x)+g(x)的关系,结合奇偶性的定义进行判断;

(1)f(x)+g(x)=+

若要上式有意义,则

即﹣1<x<1.

所以所求定义域为{x|﹣1<x<1}

(2)h(x)=f(x)+g(x),定义域为{x|﹣1<x<1}

则h(﹣x)=f(﹣x)+g(﹣x)

=log2(﹣x+1)+log2(1+x)=h(x).

所以h(x)=f(x)+g(x)是偶函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣ x3+ x2﹣2x(a∈R)
(1)当a=3时,求函数f(x)的单调区间;
(2)若对于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为ρsin(θ+ )= ,圆C的方程为 (θ为参数).
(1)把直线l和圆C的方程化为普通方程;
(2)求圆C上的点到直线l距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】活水围网养鱼技术具有养殖密度高、经济效益好的特点.研究表明:活水围网养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当不超过/立方米时, 的值为千克/年;当时, 的一次函数,且当时,

)当时,求关于的函数的表达式.

)当养殖密度为多大时,每立方米的鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左,右焦点分别为,线段的中点分别为,且 是面积为4的直角三角形.

1)求该椭圆的离心率和标准方程;

2)过做直线交椭圆于两点,使,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点列An(an , bn)(n∈N*)均为函数y=ax(a>0,a≠1)的图象上,点列Bn(n,0)满足|AnBn|=|AnBn+1|,若数列{bn}中任意连续三项能构成三角形的三边,则a的取值范围为( )
A.(0, )∪( ,+∞)
B.( ,1)∪(1,
C.(0, )∪( ,+∞)
D.( ,1)∪(1,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,椭圆C: + =1(a>b>0)的离心率是 ,且过点( ).设点A1 , B1分别是椭圆的右顶点和上顶点,如图所示过 点A1 , B1引椭圆C的两条弦A1E、B1F.

(1)求椭圆C的方程;
(2)若直线A1E与B1F的斜率是互为相反数.
①求直线EF的斜率k0②设直线EF的方程为y=k0x+b(﹣1≤b≤1)设△A1EF、△B1EF的面积分别为S1和S2 , 求S1+S2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,数列{bn} 的前n项和为Tn , 若Tn≥tn2对n∈N*恒成立,则实数t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某个体经营者把开始六个月试销AB两种商品的逐月投资与所获纯利润列成下表:

投资A商品金额(万元)

1

2

3

4

5

6

获纯利润(万元)

0.65

1.39

1.85

2

1.84

1.40

投资B商品金额(万元)

1

2

3

4

5

6

获纯利润(万元)

0.25

0.49

0.76

1

1.26

1.51

该经营者准备下月投入12万元经营这两种产品,但不知投入AB两种商品各多少才最合算请你帮助制定一下资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大利润(结果保留两个有效数字)

查看答案和解析>>

同步练习册答案