【题目】已知椭圆的左右焦点为,过(M不过椭圆的顶点和中心)且斜率为k直线l交椭圆于两点,与y轴交于点N,且.
(1)若直线l过点,求的周长;
(2)若直线l过点,求线段的中点R的轨迹方程;
(3)求证:为定值,并求出此定值.
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆 的长轴,长为4,过椭圆的右焦点作斜率为()的直线交椭圆于、两点,直线,的斜率之积为.
(1)求椭圆的方程;
(2)已知直线,直线,分别与相交于、两点,设为线段的中点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.
(1)设P是上的一点,且AP⊥BE,求∠CBP的大小;
(2)当AB=3,AD=2时,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某款冰淇淋的包装盒为圆台,盒盖为直径为的圆形纸片,每盒冰淇淋中包含有香草口味、巧克力口味和草莓口味冰淇淋球各一个,假定每个冰淇淋球都是半径为的球体,三个冰淇淋球两两相切,且都与冰淇淋盒盖、盒底和盒子侧面的曲面相切,则冰淇淋盒的体积为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在底面边长为,侧棱长为的正四棱柱中,是侧棱上的一点,.
(1)若,求异面直线与所成角的余弦;
(2)是否存在实数,使直线与平面所成角的正弦值是?若存在,请求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市《城市总体规划(年)》提出到年实现“分钟社区生活圈”全覆盖的目标,从教育与文化、医疗与养老、交通与购物、休闲与健身个方面构建“分钟社区生活圈”指标体系,并依据“分钟社区生活圈”指数高低将小区划分为:优质小区(指数为)、良好小区(指数为)、中等小区(指数为)以及待改进小区(指数为)个等级.下面是三个小区个方面指标的调查数据:
注:每个小区“分钟社区生活圈”指数,其中、、、为该小区四个方面的权重,、、、为该小区四个方面的指标值(小区每一个方面的指标值为之间的一个数值).
现有个小区的“分钟社区生活圈”指数数据,整理得到如下频数分布表:
分组 | |||||
频数 |
(Ⅰ)分别判断、、三个小区是否是优质小区,并说明理由;
(Ⅱ)对这个小区按照优质小区、良好小区、中等小区和待改进小区进行分层抽样,抽取个小区进行调查,若在抽取的个小区中再随机地选取个小区做深入调查,记这个小区中为优质小区的个数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)若,直线与曲线相交于两点,求;
(2)若,求曲线上的点到直线的距离的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com