精英家教网 > 高中数学 > 题目详情

【题目】本小题满分12分已知数列满足,若等比数列,且

1

2,记数列的前项和为

I

II求正整数,使得对任意均有

【答案】1,2)(III

【解析】

试题分析:1求得,又且数列为等比数列,可求出公比,从而可求数列的通项公式,由 可求数列的通项公式

2)(I数列是等比数列,又因为,所以,求数列的前项和为时先分组,再用等比数列的求和公式及裂项相消法求之即可II由数列的通项公式可知,,当时,,所以的最大值为,故使成立的正整数

试题解析:1由题意,可知

所以可得

又由,得公比舍去

所以数列的通项公式为

所以

故数列的通项公式为

2)(I1知,

所以

II因为

时,

所以当时,

综上,若对任意均有,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以轴正半轴为始边的锐角和钝角的终边分别与单位圆交于点,若点的横坐标是,点的纵坐标是.

(1)求的值;

(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各名,组成一个小组.

1被选中的概率;

2不全被选中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C1与y轴交于O,A两点,圆C2过O,A两点,且直线C2O恰与圆C1相切;

1求圆C2的方程。

2若圆C2上一动点M,直线MO与圆C1的另一交点为N,在平面内是否存在定点P使得PM=PN始终成立,若存在,求出定点坐标,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 的方程为,点的坐标为.

)求过点且与直线平行的直线方程;

)求过点且与直线垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是 ( )

A.由五个平面围成的多面体只能是四棱锥

B.棱锥的高线可能在几何体之外

C.仅有一组对面平行的六面体是棱台

D.有一个面是多边形,其余各面是三角形的几何体是棱锥

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,, .

1)求的值及数列的通项公式

2)令, 数列的前项和为, 试比较的大小

3)令, 数列的前项和为, 求证: 对任意, 都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,圆 的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的标准方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆 两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(改编)已知数列满足 .

(1)若 ,求实数的取值范围;

(2)设数列满足: ,设,若 ,求的取值范围;

(3)若成公比的等比数列,且,求正整数的最大值,以及取最大值时相应数列的公比.

查看答案和解析>>

同步练习册答案