精英家教网 > 高中数学 > 题目详情

如图,在直角梯形中,,将沿折起,使平面平面,得到几何体,如图2所示.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

(Ⅰ)详见解析; (Ⅱ).

解析试题分析:(Ⅰ) 先证平面,再根据即可证⊥平面; (Ⅱ)先分析知为三棱锥的高,再求得,即可得.
试题解析:(Ⅰ)证明:在图中,可得,从而,故,取的中点,连接,则,又平面⊥平面,平面平面平面,从而平面,∴,又,∴⊥平面.   
(Ⅱ)解 由(Ⅰ)知为三棱锥的高,,
由等体积性可知,几何体的体积为.
考点:1.直线与平面垂直;2.体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知四棱锥的三视图和直观图如下图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形.是侧棱上的动点.

(1)求证:
(2)若的中点,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直棱柱中,分别是的中点,.

⑴证明:;
⑵求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,△中,,在三角形内挖去一个半圆(圆心在边上,半圆与分别相切于点,与交于点),将△绕直线旋转一周得到一个旋转体。

(1)求该几何体中间一个空心球的表面积的大小;
(2)求图中阴影部分绕直线旋转一周所得旋转体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形ABCD为梯形,,求图中阴影部分绕AB旋转一周形成的几何体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C丄平面ABCD,且AB=BC=CA=,AD=CD=1.

求证:BD⊥AA1
若四边形是菱形,且,求四棱柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:三棱柱中,,,侧棱底面的中点,边上的动点。

(1)若中点,求证:平面
(2)若,求四棱锥的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,分别是的中点.

(1)求证: 底面
(2)求证:平面平面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知平面,且是垂足,

证明:

查看答案和解析>>

同步练习册答案