精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{1}{2}$cos(2x-φ)(0<φ<π),其图象过点($\frac{π}{6}$,$\frac{1}{2}$).
(1)求φ的值;
(2)求函数y=f(x)的单调递增区间,对称中心;
(3)将函数y=f(x)的图象上各点的横坐际缩短倒原来的$\frac{1}{2}$,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在[0,$\frac{π}{4}$]上的最大值和最小值.

分析 (1)根据函数f(x)=$\frac{1}{2}$cos(2x-φ)(0<φ<π)的图象过点($\frac{π}{6}$,$\frac{1}{2}$),求得 cos($\frac{π}{3}$-φ)=1,可得 φ的值.
(2)由条件利用余弦函数的单调性和图象的对称性,求得函数f(x)的增区间以及f(x)的图象的对称中心.
(3)由条件利用函数y=Acos(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用余弦函数的定义域和值域,求得g(x)在[0,$\frac{π}{4}$]上的最值.

解答 解:(1)由函数f(x)=$\frac{1}{2}$cos(2x-φ)(0<φ<π)的图象过点($\frac{π}{6}$,$\frac{1}{2}$),
可得 $\frac{1}{2}$cos($\frac{π}{3}$-φ)=$\frac{1}{2}$,即 cos($\frac{π}{3}$-φ)=1,∴φ=$\frac{π}{3}$.
(2)由(1)可得函数f(x)=$\frac{1}{2}$cos(2x-$\frac{π}{3}$),令2kπ-π≤2x-$\frac{π}{3}$≤2kπ,
求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,故函数f(x)的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
令2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,可得f(x)的图象的对称中心为($\frac{kπ}{2}$+$\frac{5π}{12}$,0),k∈Z.
(3)将函数y=f(x)的图象上各点的横坐际缩短倒原来的$\frac{1}{2}$,纵坐标不变,
得到函数y=g(x)=$\frac{1}{2}$cos(4x-$\frac{π}{3}$)的图象,当x∈[0,$\frac{π}{4}$]时,4x-$\frac{π}{4}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
故当4x-$\frac{π}{4}$=$\frac{2π}{3}$时,函数g(x)取得最小值为-$\frac{1}{4}$,当4x-$\frac{π}{4}$=0时,函数g(x)取得最大值为$\frac{1}{2}$.

点评 本题主要考查余弦函数的图象特征,余弦函数的单调性和图象的对称性,余弦函数的最值,函数y=Acos(ωx+φ)的图象变换规律,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率$\frac{\sqrt{6}}{2}$.
(1)求双曲线C的渐近线方程;
(2)若它的一个顶点到较近焦点的距离为$\sqrt{3}$-$\sqrt{2}$,求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow{a}$=(-2,2),$\overrightarrow{b}$=(3,-4),$\overrightarrow{c}$=(1,5),求:
(1)2$\overrightarrow{a}$-$\overrightarrow{b}$+3$\overrightarrow{c}$;
(2)3($\overrightarrow{a}$-$\overrightarrow{b}$)+$\overrightarrow{c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,a,b,c分别是A,B,C的对边,若a=csinB+bcosC.
(1)求B:
(2)若b=2,S△ABC=2,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\sqrt{2sin(2x-\frac{π}{3})-1}$+lg(25-x2)定义域为(-5,-$\frac{17π}{12}$]∪[-$\frac{3π}{4}$,-$\frac{5π}{12}$]∪[$\frac{π}{4}$,$\frac{7π}{12}$]∪[$\frac{5π}{4}$,$\frac{19π}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ln(sinx+$\sqrt{si{n}^{2}x+α}$),-$\frac{π}{2}$≤x≤$\frac{π}{2}$,a为实常数,且f(x)为奇函数.
(1)求a的值;试说明函数f(x)的单调性,并求f(x)的值域;
(2)设g(x)为f(arcsinx)的反函数,并指出g(x)的定义域与值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=lg(cos2x)的定义域为{x|$kπ-\frac{π}{4}$<x<kπ+$\frac{π}{4}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=sinx+tanx是(  )
A.周期为2π的奇函数B.周期为$\frac{π}{2}$的奇函数
C.周期为π的偶函数D.周期为2π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知A(2,-3),B(-4,2),且点C(-7,k)在直线AB上,则k的值为$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案