精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回).则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是(
A.
B.
C.
D.

【答案】D
【解析】解:甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回).

甲取到的数是5的倍数,

则甲、乙取到的数(a,b)共有42个,分别是:

(5,1),(5,2),(5,3),(5,4),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),

(10,1),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9),(10,11),(10,12),(10,13),(10,14),(10,15),

(15,1),(15,2),(15,3),(15,4),(15,5),(15,6),(15,7),(15,8),(15,9),(15,10),(15,11),(15,12),(15,13),(15,14),

其中甲所取的数大于乙所取的数的个数有27个,分别是:

(5,1),(5,2),(5,3),(5,4),(10,1),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9),(15,1),(15,2),

(15,3),(15,4),(15,5),(15,6),(15,7),(15,8),(15,9),(15,10),(15,11),(15,12),(15,13),(15,14),

∴在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是p= =

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=x﹣ln x﹣2.
(Ⅰ)求函数 f ( x)的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在区间(1,+∞)上恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知PA⊥平面ABCD,且四边形ABCD为矩形,M、N分别是AB、PC的中点.

1求证:MN⊥CD;

2若∠PDA=45°,求证:MN⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=xa的图象经过点.

(1)求函数f(x)的解析式,并判断奇偶性;

(2)判断函数f(x)在(﹣,0)上的单调性,并用单调性定义证明.

(3)作出函数f(x)在定义域内的大致图象(不必写出作图过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在△ABC中,ab·cos Cc·cos B,其中abc分别为角ABC的对边,在四面体PABC中,S1S2S3S分别表示△PAB△PBC△PCA△ABC的面积,αβγ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣3x2﹣9x+1(x∈R).
(1)求函数f(x)的单调区间.
(2)若f(x)﹣2a+1≥0对x∈[﹣2,4]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间(﹣2,a)(a>0)上任取一个数m,若函数f(x)=3x+m﹣3 在区间[1,+∞)无零点的概率不小于 ,则实数a能取的最小整数是(
A.1
B.3
C.5
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆Γ: =1(a>b>0)的左右焦点分别为F1 , F2 , 焦距为2c,若直线y= 与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1 , 则该椭圆的离心率等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)判断函数的奇偶性;

(2)判断并证明))上的单调性;

(3)若对任意恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案