【题目】甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回).则在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是( )
A.
B.
C.
D.
【答案】D
【解析】解:甲、乙两人从1,2,…,15这15个数中,依次任取一个数(不放回).
甲取到的数是5的倍数,
则甲、乙取到的数(a,b)共有42个,分别是:
(5,1),(5,2),(5,3),(5,4),(5,6),(5,7),(5,8),(5,9),(5,10),(5,11),(5,12),(5,13),(5,14),(5,15),
(10,1),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9),(10,11),(10,12),(10,13),(10,14),(10,15),
(15,1),(15,2),(15,3),(15,4),(15,5),(15,6),(15,7),(15,8),(15,9),(15,10),(15,11),(15,12),(15,13),(15,14),
其中甲所取的数大于乙所取的数的个数有27个,分别是:
(5,1),(5,2),(5,3),(5,4),(10,1),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9),(15,1),(15,2),
(15,3),(15,4),(15,5),(15,6),(15,7),(15,8),(15,9),(15,10),(15,11),(15,12),(15,13),(15,14),
∴在已知甲取到的数是5的倍数的情况下,甲所取的数大于乙所取的数的概率是p= = .
故选:D.
科目:高中数学 来源: 题型:
【题目】已知函数 f(x)=x﹣ln x﹣2.
(Ⅰ)求函数 f ( x)的最小值;
(Ⅱ)如果不等式 x ln x+(1﹣k)x+k>0(k∈Z)在区间(1,+∞)上恒成立,求k的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知PA⊥平面ABCD,且四边形ABCD为矩形,M、N分别是AB、PC的中点.
(1)求证:MN⊥CD;
(2)若∠PDA=45°,求证:MN⊥平面PCD.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=xa的图象经过点.
(1)求函数f(x)的解析式,并判断奇偶性;
(2)判断函数f(x)在(﹣,0)上的单调性,并用单调性定义证明.
(3)作出函数f(x)在定义域内的大致图象(不必写出作图过程).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在△ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示△PAB,△PBC,△PCA,△ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3﹣3x2﹣9x+1(x∈R).
(1)求函数f(x)的单调区间.
(2)若f(x)﹣2a+1≥0对x∈[﹣2,4]恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在区间(﹣2,a)(a>0)上任取一个数m,若函数f(x)=3x+m﹣3 在区间[1,+∞)无零点的概率不小于 ,则实数a能取的最小整数是( )
A.1
B.3
C.5
D.6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆Γ: =1(a>b>0)的左右焦点分别为F1 , F2 , 焦距为2c,若直线y= 与椭圆Γ的一个交点M满足∠MF1F2=2∠MF2F1 , 则该椭圆的离心率等于 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com