精英家教网 > 高中数学 > 题目详情
4.函数f(x)=${log_{\frac{1}{3}}}(1-{x^2})$的单调递增区间是[0,1).

分析 令t=1-x2>0,求得函数的定义域,f(x)=g(t)=${log}_{\frac{1}{3}}t$,本题即求函数t在定义域内的减区间.再利用二次函数的性质可得结论.

解答 解:令t=1-x2>0,求得函数的定义域为{x|-1<x<1},f(x)=g(t)=${log}_{\frac{1}{3}}t$,
故本题即求函数t在定义域内的减区间.
再利用二次函数的性质可得t在定义域内的减区间为[0,1),
故答案为:[0,1).

点评 本题主要考查复合函数的单调性,对数函数、二次函数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求点D到平面PBC的距离;
(3)当平面PBC与平面PDC垂直时,求PA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.关于x的不等式ax-b>0的解集是(-∞,1),则关于x的不等式$\frac{ax+b}{x-2}$≥0的解集为[-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果函数f(x)=x2+ax+2在区间[2,+∞)上是增函数,那么实数a的取值范围是(  )
A.a≤-2B.a≥-2C.a≤-4D.a≥-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义:区间[x1,x2](x1<x2)的长度为x2-x1,已知函数y=|log0.5(x+1)|定义域为[a,b],值域为[0,2],则区间[a,b]的长度的最大值为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等比数列{an}中,${a_1}+{a_2}+{a_3}+…+{a_n}={2^n}-1$,则$\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a_3^2}+…+\frac{1}{a_n^2}$=(  )
A.(2n-1)2B.$\frac{1}{3}({2^n}-1)$C.$\frac{1}{3}(4-\frac{1}{{{4^{n-1}}}})$D.$\frac{1}{3}({4^n}-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}的前n项和为Sn=$\frac{3}{{2}^{n}}$+m,bn=anan+1,n∈N*
(1)求m的值及{an}的通项公式
(2)求证{bn}为等比数列,并求b2+b4+b6+…+b20的值
(3)令cn=(2n+1)•an(n∈N*),求{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆锥的轴截面是正三角,则它的侧面展开扇形圆心角为π弧度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设f(x)=${e}^{\frac{1}{2}x}$(x-1)-ax+2a恰有小于1两个零点,则a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案