精英家教网 > 高中数学 > 题目详情
若△ABC的三个内角A,B,C满足sin2A=sin2B+sinBsinC+sin2C,则∠A=
 
考点:余弦定理,正弦定理
专题:解三角形
分析:利用正弦定理化简已知的等式,得到关于a,b及c的关系式,再利用余弦定理表示出cosA,把得出的关系式变形后代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.
解答: 解:根据正弦定理
a
sinA
=
b
sinB
=
c
sinC
=2R,
化简已知的等式得:a2=b2+bc+c2,即b2+c2-a2=-bc,
∴根据余弦定理得:cosA=
b2+c2-a2
2bc
=-
1
2

又∵A为三角形的内角,
∴A=120°.
故答案为:120°.
点评:此题考查了正弦定理,余弦定理,以及特殊角的三角函数值,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知线性变化T把点(1,-1)变成了(1,0),把点(1,1)变成了点(0,1).
(1)求变换T所对应的矩阵M;
(2)求直线y=-1在变换T的作用下得到直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x-
1
x
>0成立的充分不必要条件是(  )
A、x>-1
B、x>l
C、-l<x<0或x>l
D、x<-1或0<x<l

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为内角A,B,C的对边,已知a=5
2
,c=10,A=30°,则角B等于(  )
A、105°B、60°
C、15°D、105°或15°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知k为任意实数,直线(k+1)x-ky-1=0被圆(x-1)2+(y-1)2=4截得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin
C
2
=
10
4

(1)求cosC的值:
(2)若△ABC的面积为△,且sin2A+sin2B=
13
16
sin2C,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如下程序框图中,输入f0(x)=xex,若输出的fi(x)是(8+x)ex,则程序框图中的判断框应填入(  )
A、i≤6B、i≤7
C、i≤8D、i≤9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项为正的等差数列{an}的公差为d=1,且
1
a1a2
+
1
a2a3
=
2
3

(1)求数列{an}的通项公式;
(2)若数列{bn}满足:b1=λ,an+1bn+1+anbn=(-1)n+1(n∈N),是否存在实数λ,使得数列{bn}为等比数列?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“存在x0∈R,使得2x+5=0”的否定是
 

查看答案和解析>>

同步练习册答案