精英家教网 > 高中数学 > 题目详情

如图,已知抛物线焦点为,直线经过点且与抛物线相交于两点

(Ⅰ)若线段的中点在直线上,求直线的方程;
(Ⅱ)若线段,求直线的方程

(Ⅰ);(Ⅱ)

解析试题分析:(Ⅰ)根据已知条件设出未知的点的坐标和斜率,根据两点间的斜率公式和中点坐标公式找等价关系,求出直线 的斜率,由已知得的根据斜截式求出直线方程; (Ⅱ)设出直线的方程为,这样避免讨论斜率的存在问题,与抛物线的方程联立方程组,得到根与系数的关系,根据直线与抛物线相交的交点弦的长来求参数的值
试题解析:解:(Ⅰ)由已知得交点坐标为,        2分
设直线的斜率为,中点

所以,又,所以4分
故直线的方程是:6分
(Ⅱ)设直线的方程为,7分
与抛物线方程联立得
消元得,9分
所以有
11分
所以有,解得,13分
所以直线的方程是:,即15分
考点:1、直线的方程;2、直线与圆锥曲线的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C
(1)求曲线C的方程.
(2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线与双曲线有公共焦点,点是曲线在第一象限的交点,且
(1)求双曲线的方程;
(2)以双曲线的另一焦点为圆心的圆与直线相切,圆.过点作互相垂直且分别与圆、圆相交的直线,设被圆截得的弦长为被圆截得的弦长为,问:是否为定值?如果是,请求出这个定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知分别是椭圆的左、右焦点,椭圆的离心率
(I)求椭圆的方程;(II)已知直线与椭圆有且只有一个公共点,且与直线相交于点.求证:以线段为直径的圆恒过定点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知△ABC的两个顶点A,B的坐标分别是(-5,0),(5,0),且AC,BC所在直
线的斜率之积等于m(m≠0),求顶点C的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

抛物线M: 的准线过椭圆N: 的左焦点,以坐标原点为圆心,以t(t>0)为半径的圆分别与抛物线M在第一象限的部分以及y轴的正半轴相交于点A与点B,直线AB与x轴相交于点C.

(1)求抛物线M的方程.
(2)设点A的横坐标为x1,点C的横坐标为x2,曲线M上点D的横坐标为x1+2,求直线CD的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设点A(,0),B(,0),直线AM、BM相交于点M,且它们的斜率之积为.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)若直线过点F(1,0)且绕F旋转,与圆相交于P、Q两点,与轨迹C相交于R、S两点,若|PQ|求△的面积的最大值和最小值(F′为轨迹C的左焦点).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线交于两点.
(1)写出的方程;
(2) ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的左、右焦点分别为,且椭圆过点.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作不与轴垂直的直线交该椭圆于两点,为椭圆的左顶点,试判断的大小是否为定值,并说明理由.

查看答案和解析>>

同步练习册答案