精英家教网 > 高中数学 > 题目详情
若a,b是两条直线,α是一个平面,则下列命题正确的是(   )
A.若a∥b,则a平行于经过b的任何平面
B.若a∥α,则a与α内任何直线平行
C.若a∥α,b∥α,则a∥b
D.若a∥b,a∥α,bα,则b∥α
D

试题分析:对于A.若a∥b,则a平行于经过b的任何平面,可能相交,错误
对于B.若a∥α,则a与α内任何直线平行,平行与平面内无数条直线,不是任何直线,错误。
对于C.若a∥α,b∥α,则a∥b,平行于同一平面的两条直线可能相交或者异面直线,错误
对于D.若a∥b,a∥α,bα,则b∥α,满足线面平行 的判定定理,成立,故选D.
点评:解决的关键是熟悉平面中线面平行和线面的位置关系的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知二面角α–l-β的平面角为45°,有两条异面直线a,b分别垂直于平面,则异面直线所成角的大小是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点.

求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线与平面,有下列四个命题: 
,则;   ②,则
,则;  ④,则.
其中假命题的序号是:(   )
A.①、②B.③、④C.②、③D.①、④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD为平行四边形,BC⊥平面ABEAEBEBE = BC = 1,AE = M为线段AB的中点,N为线段DE的中点,P为线段AE的中点。

(1)求证:MNEA
(2)求四棱锥MADNP的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四个命题:
①若直线平面,则内任何直线都与平行;
②若直线平面,则内任何直线都与垂直;
③若平面平面,则内任何直线都与平行;
④若平面平面,则内任何直线都与垂直。
其中正确的两个命题是(  )
A.①②B.②③C.③④D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起, 使得△ABD与△ABC成30o的二面角,如图二,在二面角中.

(1) 求D、C之间的距离;
(2) 求CD与面ABC所成的角的大小;
(3) 求证:对于AD上任意点H,CH不与面ABD垂直。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在四棱锥中,,,分别是的中点.

(Ⅰ)求证
(Ⅱ)求证
(Ⅲ)若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=2,OB=3,OC=4,E是OC的中点.

(1)求异面直线BE与AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

同步练习册答案