精英家教网 > 高中数学 > 题目详情
9.如果π<θ<$\frac{5π}{4}$,那么下列各式中正确的是(  )
A.cosθ<tanθ<sinθB.sinθ<cosθ<tanθC.tanθ<sinθ<cosθD.cosθ<sinθ<tanθ

分析 由条件利用三角函数的定义域和值域,可得cosθ、sinθ、tanθ 的大小关系.

解答 解:∵π<θ<$\frac{5π}{4}$,
∴sinθ<0,cosθ<0,tanθ>0.
∴tanθ>sinθ且tanθ>cosθ.
设y=sinθ-cosθ,
∴$y′=cosθ+sinθ=\sqrt{2}sin(θ+\frac{π}{4})$,
∵π<θ<$\frac{5π}{4}$,
∴$\frac{5π}{4}<θ+\frac{π}{4}<\frac{3π}{2}$.
∴$sin(θ+\frac{π}{4})<0$.
∴$y′=\sqrt{2}sin(θ+\frac{π}{4})<0$.
∴y在(π,$\frac{5π}{4}$)上单调递减.
∴y=sinθ-cosθ$>sin\frac{5π}{4}-cos\frac{5π}{4}=0$.
∴sinθ>cosθ.
∴cosθ<sinθ<tanθ.
故选:D.

点评 本题主要考查三角函数的定义域和值域,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)定义在实数集R上的偶函数,且在区间[0,+∞)上单调递减,若实数a满足f(log2a)+f(log${\;}_{\frac{1}{2}}$a)≤2f(-1),则a的取值范围是(  )
A.[2,+∞]∪(-∞,$\frac{1}{2}$]B.(0,$\frac{1}{2}$]∪[2,+∞)C.[$\frac{1}{2}$,2]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆E的两个焦点分别为(0,-1)和(0,1),离心率e=$\frac{\sqrt{2}}{2}$
(1)求椭圆E的方程
(2)若直线l:y=kx+m(k≠0)与椭圆E交于不同的两点A、B,且线段AB的垂直平分线过定点P(0,$\frac{1}{2}$),求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.曲线y=x2+1在P($\frac{1}{2}$,$\frac{5}{4}$)处的切线的倾斜角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,且经过点(1,$\frac{3}{2}$)
(1)求椭圆C的方程;
(2)已知A为椭圆C的左顶点,直线l过右焦点F与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=6,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知全集U=R,A={x|-2<x<0},B={x|-1<x<3},求:
(1)A∪B
(2)A∩B
(3)(∁UA)∩(∁UB)
(4)(∁UA)∪(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.$(2x-1){(\frac{1}{x}+x)^6}$在展开式中x3的系数为30.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,$B=\frac{π}{6}$.求cosA+sinC取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某学校有学生4 022人.为调查学生对2012年伦敦奥运会的了解状况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是134.

查看答案和解析>>

同步练习册答案