【题目】已知函数,.
(1)求的单调区间;
(2)设曲线与轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的实数,都有;
(3)若方程为实数)有两个实数根,,且,求证:.
【答案】(1)单调递增区间为,单调递减区间为;(2)证明见解析;(3)证明见解析.
【解析】
(1)求出原函数的导函数,求和的解,即可求出函数的单调性;
(2)设出点的坐标,利用导数求出切线方程,构造函数,利用导数得到对于任意实数,有,即对任意实数,都有;
(3)由(2)知,,求出方程的根,由在上单调递减,得到.同理得到,则可证得结果..
(1)解:由,可得.
当时,,函数单调递增;
当时,,函数单调递减.
的单调递增区间为,单调递减区间为.
(2)证明:设点的坐标为,,则,,
曲线在点处的切线方程为,即,
令函数,即,
则,在R上单调递减.
,当时,;当,时,,
在上单调递增,在,上单调递减,
对于任意实数,,即对任意实数,都有;
(3)证明:由(2)知,,设方程的根为,可得.
在上单调递减,又由(2)知,
因此.
类似地,设曲线在原点处的切线方程为,可得,
对于任意的,有,即.
设方程的根为,可得,
在上单调递增,且,
因此,
由此可得.
科目:高中数学 来源: 题型:
【题目】2020年寒假是特殊的寒假,因为疫情全体学生只能在家进行网上在线学习,为了研究学生在网上学习的情况,某学校在网上随机抽取120名学生对于线上教育进行调查,其中男生与女生的人数之比为,其中男生30人对于线上教育满意,女生中有15名表示对线上教育不满意.
(1)完成列联表,并回答能否有99%的把握认为对“线上教育是否满意与性别有关”;
满意 | 不满意 | 总计 | |
男生 | |||
女生 | |||
合计 | 120 |
(2)从被调查中对线上教育满意的学生中,利用分层抽样抽取8名学生,再在8名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.
参考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.842 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前n项和为,,若是公差不为0的等差数列,且.
(1)求数列的通项公式;
(2)证明:数列是等差数列;
(3)记,若存在,(),使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,点,点是曲线上的动点,为线段的中点.
(1)写出曲线的参数方程,并求出点的轨迹的直角坐标方程;
(2)已知点,直线与曲线的交点为,若线段的中点为,求线段长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+|x+2|.
(1)当a=1 时,求不等式f(x)≤5的解集;
(2)x0∈R,f(x0)≤|2a+1|,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点, 为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】稠环芳香烃化合物中有不少是致癌物质,比如学生钟爱的快餐油炸食品中会产生苯并芘,它是由一个苯环和一个芘分子结合而成的稠环芳香烃类化合物,长期食用会致癌.下面是一组稠环芳香烃的结构简式和分子式:
名称 | 萘 | 蒽 | 并四苯 | … | 并n苯 |
结构简式 | … | … | |||
分子式 | … | … |
由此推断并十苯的分子式为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求直线与曲线的普通方程;
(2)若直线与曲线交于、两点,点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com