精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1(a>b>0),A(a,0),B(0,b)
,原点到直线AB的距离为c(c为半焦距),则椭圆离心率e=
5
-1
2
5
-1
2
分析:确定直线AB的方程为:bx+ay-ab=0,利用原点到过A(a,0),B(0,b)两点的直线的距离是c,建立方程,即可求得椭圆的离心率.
解答:解:由题意,直线AB的方程为:bx+ay-ab=0
∵原点到过A(a,0),B(0,b)两点的直线的距离是c
|ab|
b2+a2
=c
∴a2b2=c2(a2+b2
∴a2(a2-c2)=c2(2a2-c2
∴e4-3e2+1=0
∴e=
5
-1
2

故答案为:
5
-1
2
点评:本题考查椭圆的性质,主要考查求椭圆的离心率,考查计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案