【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,,为椭圆上两点,圆.
(1)若轴,且满足直线与圆相切,求圆的方程;
(2)若圆的半径为2,点,满足,求直线被圆截得弦长的最大值.
【答案】(1)
(2)
【解析】
(1)根据题意先计算出点坐标,然后得到直线的方程,根据直线与圆相切,得到半径的大小,从而得到所求圆的方程;(2)先计算斜率不存在时,被圆截得弦长,斜率存在时设为,与椭圆联立,得到和,代入到得到的关系,表示出直线被圆截得的弦长,代入的关系,从而得到弦长的最大值.
解:(1)因为椭圆的方程为,
所以,,
因为轴,所以,
根据对称性,可取,
则直线的方程为,即.
因为直线
所以圆的方程为 .
(2)圆的半径为2,可得圆的方程为.
①当轴时,,所以,
得,
此时得直线被圆截得的弦长为.
②当与轴不垂直时,设直线的方程为,
,,
首先由,得,
即,所以(*).
联立,消去得,
在时,,
代入(*)式,得,
由于圆心到直线的距离为,
所以直线被圆截得的弦长为,
故当时,有最大值为.
综上,因为,
所以直线被圆截得的弦长的最大值为.
科目:高中数学 来源: 题型:
【题目】如图,已知矩形ABCD,,,AF⊥平面ABC,且.E为线段DC上一点,沿直线AE将△ADE翻折成,M为的中点,则三棱锥体积的最小值是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的两个数列,满足,.且.
(1)求证数列为等差数列;
(2)求数列的通项公式;
(3)设数列,的前n项和分别为,,求使得等式成立的有序数对.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 为等差数列 的前 项和,其中 ,且 .
(1)求常数 的值,并写出 的通项公式;
(2)记 ,数列 的前 项和为 ,若对任意的 ,都有 ,求常数 的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥S﹣ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D、E分别是AC、BC的中点,F在SE上,且SF=2FE.
(1)求证:平面SBC⊥平面SAE
(2)若G为DE中点,求二面角G﹣AF﹣E的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:
(1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设,分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求,的值(,的值四舍五入取整数),并计算;
(2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.
参考数据:;;.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市在开展创建“全国文明城市”活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文”过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)求出a的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,设第2组抽到人,求随机变量的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com