精英家教网 > 高中数学 > 题目详情
(2008•崇明县一模)在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.若从中任选3人,则选出的火炬手的编号能组成以2为公比的等比数列的概率为
1
136
1
136
分析:由题意知本题是古典概型问题,试验发生的基本事件总数为C183,选出火炬手编号为an=a1•2n-1,分类讨论当a1=1时可得3种选法;a1=2时得2种选法;a1=3时得1种选法.
解答:解:由题意知本题是古典概型问题,
∵试验发生的基本事件总数为C183=17×16×3.
选出火炬手编号为an=a1•2n-1
a1=1时,由1,2,4,8,16可得3种选法;
a1=2时,由2,4,8,16可得2种选法;
a1=3时,由3,6,12可得1种选法.
∴P=
3+2+1
17×16×3
=
1
136

故答案为:
1
136
点评:本题主要考查古典概型和等差数列数列,理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•崇明县一模)对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)·f(x2);②f(x1•x2)=f(x1)+f(x2);③
f(x1)-f(x2)
x1-x2
>0;④f(
x1+x2
2
)
f(x1)+f(x2)
2

当f(x)=lgx时,上述结论中正确结论的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)集合A={x|
x-1x+1
<0}
,B={x||x-b|<a},若“a=1”是“A∩B≠φ”的充分条件,则b的取值范围是
-2<b<2
-2<b<2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)已知函数f(x)=2mx2-2(4-m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是
(0,8)
(0,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)数列{an}满足
an+1
an
=2
(n∈N*),且a2=3,则an=
3
2
×2n-1
3
2
×2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•崇明县一模)已知:函数fn(x)(n∈N*)的定义域为(-∞,0)∪(0,+∞),其中f1(x)=x+1+
1
x
,并且当n>1且n∈N*时,满足fn(x)-fn-1(x)=xn+
1
xn

(1)求函数fn(x)(n∈N*)的解析式;
(2)当n=1,2,3时,分别研究函数fn(x)的单调性与值域;
(3)借助(2)的研究过程或研究结论,提出一个类似(2)的研究问题,并写出问题的研究过程与研究结论.
【第(3)小题将根据你所提出问题的质量,以及解决所提出问题的情况进行分层评分】

查看答案和解析>>

同步练习册答案