精英家教网 > 高中数学 > 题目详情

【题目】已知,且.设函数在区间内单调递减; 曲线轴交于不同的两点,如果为真命题,为假命题,求实数的取值范围.

【答案】,

命题P为真

命题Q为真

为真,为假

命题一个为真一个为假

实数的取值范围是.

【解析】试题分析:本题考查复合命题真假判定,考查了指数函数的单调性与曲线的交点问题。根据指数函数在区间内单调递减,可得;曲线轴交于不同的两点,则,求出。因为“”为真命题,“”为假命题,所以恰好一真一假,即可求出实数的取值范围。

试题解析:由“函数在区间内单调递减”

可知

由“曲线轴交于不同的两点”

可知

因为“”为真命题,“”为假命题,

所以恰好一真一假,

真, 假时,

.

假, 真时,

.

综上可知, 的取值范围为: .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,底面为矩形, .点在棱上,平面与棱交于点

(Ⅰ)求证:

(Ⅱ)求证:平面平面

(Ⅲ)若 ,平面平面,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(Ⅰ)抛物线的顶点在原点,坐标轴为对称轴,并经过点,求此抛物线的方程.

(Ⅱ)已知圆: ),把圆上的各点纵坐标不变,横坐标伸长到原来的倍得一椭圆.求椭圆方程,并证明椭圆离心率是与无关的常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱中, ,侧面底面 的中点, .

(Ⅰ)求证:

(Ⅱ)求直线与平面所成线面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 ,向量 =(cosα,sinα),
(1)证明:向量 垂直;
(2)当| |=| |时,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2 +x)+ (sin2x﹣cos2x),x∈[ ].
(1)求 的值;
(2)求f(x)的单调区间;
(3)若不等式|f(x)﹣m|<2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】斐波那契数列满足: .若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论错误的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个包装箱内有6件产品,其中4件正品,2件次品。现随机抽出两件产品.(要求罗列出所有的基本事件)

(1)求恰好有一件次品的概率。

(2)求都是正品的概率。

(3)求抽到次品的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面底面平分的中点,分别为上一点,且.

(1)若,证明:平面.

(2)过点作平面的垂线,垂足为,求三棱锥的体积.

查看答案和解析>>

同步练习册答案