5£®ÒÑÖªº¯Êý$f£¨x£©=\frac{xlnx}{x+1}$ºÍg£¨x£©=m£¨x-1£©£¬m¡ÊR£®
£¨¢ñ£©m=1ʱ£¬Çó·½³Ìf£¨x£©=g£¨x£©µÄʵ¸ù£»
£¨¢ò£©Èô¶ÔÓÚÈÎÒâµÄx¡Ê[1£¬+¡Þ£©£¬f£¨x£©¡Üg£¨x£©ºã³ÉÁ¢£¬ÇómµÄÈ¡Öµ·¶Î§£»
£¨¢ó£©ÇóÖ¤£º$\frac{4¡Á1}{{4¡Á{1^2}-1}}+\frac{4¡Á2}{{4¡Á{2^2}-1}}+\frac{4¡Á3}{{4¡Á{3^2}-1}}+¡­+\frac{4¡Á1007}{{4¡Á{{1007}^2}-1}}£¾ln2015$£®

·ÖÎö £¨¢ñ£©´úÈëm=1ʱ£¬f£¨x£©=g£¨x£©¼´$\frac{xlnx}{x+1}$=£¨x-1£©£¬ÕûÀí·½³ÌµÃ$lnx-x+\frac{1}{x}=0$£¬ÀûÓõ¼º¯ÊýÅжϺ¯ÊýµÄµ¥µ÷ÐÔΪµÝ¼õº¯Êý£¬¹Ê×î¶àÓÐÒ»¸öÁãµã£¬¶øh£¨1£©=0£¬¹Ê·½³Ìf£¨x£©=g£¨x£©ÓÐΩһµÄʵ¸ùx=1£»
£¨¢ò£©¶ÔÓÚÈÎÒâµÄx¡Ê[1£¬+¡Þ£©£¬f£¨x£©¡Üg£¨x£©ºã³ÉÁ¢£¬Í¨¹ý¹¹Ô캯ÊýÉè$F£¨x£©=lnx-m£¨x-\frac{1}{x}£©$£¬ÀûÓõ¼º¯ÊýÅжϺ¯ÊýµÄµ¥µ÷ÐÔ£¬$F'£¨x£©=\frac{1}{x}-m£¨1+\frac{1}{x^2}£©=\frac{{-m{x^2}+x-m}}{x^2}$£¬Í¨¹ýÌÖÂÛm£¬ÅжÏÊÇ·ñ·ûºÏÌâÒ⣻
ÓÉ£¨¢ò£©Öª£¬µ±x£¾1ʱ£¬$m=\frac{1}{2}$ʱ£¬$lnx£¼\frac{1}{2}£¨x-\frac{1}{x}£©$³ÉÁ¢£®½áºÏÌâÐÍ£¬¹¹Ôì²»·ÁÁî$x=\frac{2k+1}{2k-1}£¾1£¬£¨k¡Ê{N^*}£©$£¬
µÃ³ö$ln£¨2k+1£©-ln£¨2k-1£©£¼\frac{4k}{{4{k^2}-1}}£¬£¨k¡Ê{N^*}£©$£¬ÀûÓÃÀۼӿɵýáÂÛ£»

½â´ð £¨¢ñ£©m=1ʱ£¬f£¨x£©=g£¨x£©¼´$\frac{xlnx}{x+1}$=£¨x-1£©£¬
¡ßx£¾0£¬ËùÒÔ·½³Ì¼´Îª$lnx-x+\frac{1}{x}=0$£¬
Áî$h£¨x£©=lnx-x+\frac{1}{x}$£¬Ôò$h'£¨x£©=\frac{1}{x}-1-\frac{1}{x^2}=\frac{{-{x^2}+x-1}}{x^2}=\frac{{-[{{£¨x-\frac{1}{2}£©}^2}+\frac{3}{4}]}}{x^2}£¼0$£¬
¡àh£¨x£©µ¥µ÷µÝ¼õ£¬
¶øh£¨1£©=0£¬¹Ê·½³Ìf£¨x£©=g£¨x£©ÓÐΩһµÄʵ¸ùx=1¡­4'
£¨¢ò£©¶ÔÓÚÈÎÒâµÄx¡Ê[1£¬+¡Þ£©£¬f£¨x£©¡Üg£¨x£©ºã³ÉÁ¢£¬
¡àlnx¡Üm£¨x-$\frac{1}{x}$£©£¬
Éè$F£¨x£©=lnx-m£¨x-\frac{1}{x}£©$£¬¼´?x¡Ê[1£¬+¡Þ£©£¬F£¨x£©¡Ü0£¬
$F'£¨x£©=\frac{1}{x}-m£¨1+\frac{1}{x^2}£©=\frac{{-m{x^2}+x-m}}{x^2}$
¢ÙÈôm¡Ü0£¬ÔòF'£¨x£©£¾0£¬F£¨x£©¡ÝF£¨1£©=0£¬ÕâÓëÌâÉèF£¨x£©¡Ü0ì¶Ü
¢ÚÈôm£¾0£¬·½³Ì-mx2+x-m=0µÄÅбðʽ¡÷=1-4m2£¬
µ±¡÷¡Ü0£¬¼´$m¡Ý\frac{1}{2}$ʱ£¬F'£¨x£©¡Ü0£¬
¡àF£¨x£©ÔÚ£¨1£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬
¡àF£¨x£©¡ÜF£¨1£©=0£¬¼´²»µÈʽ³ÉÁ¢
µ±$0£¼m£¼\frac{1}{2}$ʱ£¬·½³Ì-mx2+x-m=0ÓÐÁ½Õýʵ¸ù£¬ÉèÁ½¸ùΪx1£¬x2£¬$£¨{x_1}£¼{x_2}£©\;{x_1}=\frac{{1-\sqrt{1-4{m^2}}}}{2m}¡Ê£¨0£¬1£©£¬{x_2}=\frac{{1+\sqrt{1-4{m^2}}}}{2m}¡Ê£¨1£¬+¡Þ£©$
µ±x¡Ê£¨1£¬x2£©£¬F'£¨x£©£¾0£¬F£¨x£©µ¥µ÷µÝÔö£¬F£¨x£©£¾F£¨1£©=0ÓëÌâÉèì¶Ü£¬
×ÛÉÏËùÊö£¬$m¡Ý\frac{1}{2}$£®
ËùÒÔ£¬ÊµÊýmµÄÈ¡Öµ·¶Î§ÊÇ$[{\frac{1}{2}£¬+¡Þ}£©$¡­9'
£¨¢ó£©ÓÉ£¨¢ò£©Öª£¬µ±x£¾1ʱ£¬$m=\frac{1}{2}$ʱ£¬$lnx£¼\frac{1}{2}£¨x-\frac{1}{x}£©$³ÉÁ¢£®
²»·ÁÁî$x=\frac{2k+1}{2k-1}£¾1£¬£¨k¡Ê{N^*}£©$£¬
ËùÒÔ$ln\frac{2k+1}{2k-1}£¼\frac{1}{2}£¨\frac{2k+1}{2k-1}-\frac{2k-1}{2k+1}£©=\frac{4k}{{4{k^2}-1}}$£¬$ln£¨2k+1£©-ln£¨2k-1£©£¼\frac{4k}{{4{k^2}-1}}£¬£¨k¡Ê{N^*}£©$$\left\{\begin{array}{l}ln3-ln1£¼\frac{4}{{4¡Á{1^2}-1}}\\ ln5-ln3£¼\frac{4¡Á2}{{4¡Á{2^2}-1}}\\ ln£¨2n+1£©-ln£¨2n-1£©£¼\frac{4¡Án}{{4¡Á{n^2}-1}}\end{array}\right.$
ÀۼӿɵÃ$ln£¨2n+1£©£¼\sum_{i=1}^n{\frac{4i}{{4{i^2}-1}}}$£¨n¡ÊN*£©£®
È¡n=1007£¬¼´µÃ$\sum_{i=1}^{1007}{\frac{4i}{{4{i^2}-1}}£¾ln2015}$£®

µãÆÀ ¿¼²éÁËÁãµãÓëµ¥µ÷ÐÔ£¬ÀûÓõ¼ÊýÅжϺã³ÉÁ¢ÎÊÌ⣬ÀûÓÃÒÑÖ¤½áÂÛ£¬¹¹Ô캯Êý½â¾öʵ¼ÊÎÊÌ⣮ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®·ÛËé»úµÄÉÏÁ϶·ÊÇÕýËÄÀą̂ÐÎ×´£¬ËüµÄÉÏ¡¢Ïµ×Ãæ±ß³¤·Ö±ðΪ80mm¡¢380mm£¬¸ß£¨ÉÏϵ×ÃæµÄ¾àÀ룩ÊÇ200mm£¬¼ÆËãÖÆÔìÕâÑùÒ»¸öÉÏÁ϶·ËùÐèÌú°åµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚ¡÷ABCÖУ¬A=45¡ã£¬a=2$\sqrt{2}$£¬c=2$\sqrt{3}$£¬ÇóC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îΪd£¬Ç°nÏîºÍΪSn£¬¸÷Ïî¾ùΪÕýÊýµÄµÈ±ÈÊýÁÐ{bn}µÄ¹«±ÈΪq£¬ÒÑÖªa1=3£¬b1=1£¬ÇÒb2+S2=12£¬a3=b3£®
£¨¢ñ£©ÇóÊýÁÐ{an}ºÍ{bn}µÄͨÏʽ£»
£¨¢ò£©ÇóÊýÁÐ{$\frac{1}{{S}_{n}}$}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®¸ø³öÏÂÁÐËĸöÃüÌ⣺
¢Ù°ë¾¶Îª2£¬Ô²ÐĽǵĻ¡¶ÈÊýΪ$\frac{1}{2}$µÄÉÈÐÎÃæ»ýΪ$\frac{1}{2}$£®
¢ÚÈô¦Á£¬¦ÂΪÈñ½Ç£¬tan£¨¦Á+¦Â£©=$\frac{1}{2}$£¬tan¦Â=$\frac{1}{3}$£¬Ôò¦Á+2¦Â=$\frac{¦Ð}{4}$»ò$\frac{5¦Ð}{4}$£®
¢Ûº¯Êýy=cos£¨2x-$\frac{¦Ð}{3}$£©µÄÒ»Ìõ¶Ô³ÆÖáÊÇx=$\frac{2¦Ð}{3}$
¢ÜÒÑÖª¦Á¡Ê£¨0£¬¦Ð£©£¬sin¦Á+cos¦Á=-$\frac{\sqrt{2}}{5}$£¬Ôòtan£¨¦Á+$\frac{¦Ð}{4}$£©=$\frac{\sqrt{6}}{12}$
ÆäÖÐÕýÈ·µÄÃüÌâÊǢۢܣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ{an}¡¢{bn}£¬ÆäÖУ¬${a_n}=\frac{1}{{2£¨{1+2+3+¡­+n}£©}}$£¬ÊýÁÐ{bn}Âú×ãb1=2£¬bn+1=2bn£®
£¨1£©ÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©ÊÇ·ñ´æÔÚ×ÔÈ»Êým£¬Ê¹µÃ¶ÔÓÚÈÎÒân¡ÊN*£¬n¡Ý2£¬ÓÐ$1+\frac{1}{b_1}+\frac{1}{b_2}+¡­+\frac{1}{b_n}£¼\frac{m-8}{4}$ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ömµÄ×îСֵ£»
£¨3£©ÈôÊýÁÐ{cn}Âú×ã${c_n}=\left\{{\begin{array}{l}{\frac{1}{{n{a_n}}}£¬nΪÆæÊý}\\{{b_n}£¬nΪżÊý}\end{array}}\right.$£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®¡°|x|£¾|y|¡±ÊÇ¡°x£¾y¡±µÄ¼È·Ç³ä·ÖÒ²·Ç±ØÒªÌõ¼þ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¼¯ºÏS={3£¬4£¬5}£¬T={4£¬7£¬8}£¬ÔòS¡ÈT=£¨¡¡¡¡£©
A£®{4}B£®{3£¬5£¬7£¬8}C£®{3£¬4£¬5£¬7£¬8}D£®{3£¬4£¬4£¬5£¬7£¬8}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®É輯ºÏA={1£¬2£¬3}£¬B={2£¬4}£¬ÔòA¡ÉB={2}£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸