【题目】已知数列的首项为1,且,数列满足,,对任意,都有.
(1)求数列、的通项公式;
(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.
【答案】(Ⅰ), ;(Ⅱ)
【解析】
试题(1)由,得,又,两式相减得,整理得,即,又因为,,
利用累积法得,
从而可求出数学的通项公式为;
在数列中,由,得,且,
所以数学是以首项为,公比为的等比数列,从而数列的通项公式为.
(2)由题意得,
,
两式相减得,
由等比数列前项和公式可求得,
由不等式恒成立,得恒成立,
即()恒成立,
构造函数(),
当时,恒成立,则不满足条件;
当时,由二次函数性质知不恒成立;
当时,恒成立,则满足条件.
综上所述,实数的取值范围是.
试题解析:(1)∵,∴(),两式相减得,,
∴,即(),又因为,,从而
∴(),
故数列的通项公式().
在数列中,由,知数列是等比数列,首项、公比均为,
∴数列的通项公式.
(2)∴①
∴②
由①-②,得,
∴,
不等式即为,
即()恒成立.
方法一、设(),
当时,恒成立,则不满足条件;
当时,由二次函数性质知不恒成立;
当时,恒成立,则满足条件.
综上所述,实数λ的取值范围是.
方法二、也即()恒成立,
令.则,
由,单调递增且大于0,∴单调递增∴
∴实数λ的取值范围是.
科目:高中数学 来源: 题型:
【题目】高一某班级在学校数学嘉年华活动中推出了一款数学游戏,受到大家的一致追捧.游戏规则如下:游戏参与者连续抛掷一颗质地均匀的骰子,记第i次得到的点数为,若存在正整数n,使得,则称为游戏参与者的幸运数字。
(I)求游戏参与者的幸运数字为1的概率;
(Ⅱ)求游戏参与者的幸运数字为2的概率,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面上,将两个半圆弧和、两条直线和围成的封闭图形记为,如图中阴影部分.记绕轴旋转一周而成的几何体为,过作的水平截面,所得截面面积为,试利用祖暅原理(祖暅原理:“幂势既同,则积不容异”,意思是:两等高的几何体在同高处被截得的两个截面面积均相等,那么这两个几何体的体积相等)、一个平放的圆柱和一个长方体,得出的体积值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}前n项和Sn满足:2Sn+an=1.
(1)求数列{an}的通项公式;
(2)设 ,数列{bn}的前n项和为Tn , 求证:Tn<2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)当a=1时,求函数f(x)在x=e﹣1处的切线方程;
(2)当 时,讨论函数f(x)的单调性;
(3)若x>0,求函数 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究“晚上喝绿茶与失眠”有无关系,调查了100名人士,得到下面的列联表:
失眠 | 不失眠 | 合计 | |
晚上喝绿茶 | 16 | 40 | 56 |
晚上不喝绿茶 | 5 | 39 | 44 |
合计 | 21 | 79 | 100 |
由已知数据可以求得:,则根据下面临界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
可以做出的结论是( )
A. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠有关”
B. 在犯错误的概率不超过0.01的前提下认为“晚上喝绿茶与失眠无关”
C. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠有关”
D. 在犯错误的概率不超过0.05的前提下认为“晚上喝绿茶与失眠无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,有、、三座城市,城在城的正西方向,且两座城市之间的距离为;城在城的正北方向,且两座城市之间的距离为.由城到城只有一条公路,甲有急事要从城赶到城,现甲先从城沿公路步行到点(不包括、两点)处,然后从点处开始沿山路赶往城.若甲在公路上步行速度为每小时,在山路上步行速度为每小时,设(单位:弧度),甲从城赶往城所花的时间为(单位:).
(1)求函数的表达式,并求函数的定义域;
(2)当点在公路上何处时,甲从城到达城所花的时间最少,并求所花的最少的时间的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com