精英家教网 > 高中数学 > 题目详情
已知曲线C的极坐标方程是ρ-2cosθ-4sinθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,设直线l的参数方程是
x=
1
2
t
y=2+
3
2
t
(t是参数).
(1)将曲线C的极坐标方程化为直角坐标方程,将直线l的参数方程化为普通方程;
(2)若直线l与曲线C相交于A、B两点,与y轴交于点E,求|EA|+|EB|.
考点:参数方程化成普通方程,点的极坐标和直角坐标的互化
专题:坐标系和参数方程
分析:(1)由曲线C的极坐标方程ρ-2cosθ-4sinθ=0,化为ρ2-2ρcosθ-4ρsinθ=0,利用
x=ρcosθ
y=ρsinθ
即可得出;由直线l的参数方程
x=
1
2
t
y=2+
3
2
t
(t是参数),把t=2x代入y=2+
3
2
t
即可得出.
(2)把直线l的参数方程代入曲线C的直角坐标方程可得:t2-t-4=0.点E对应的参数为t=0.设点A,B分别对应的参数为t1,t2.利用|EA|+|EB|=|t1|+|t2|=|t1-t2|=
(t1+t2)2-4t1t2
及其根与系数的关系即可得出.
解答: 解:(1)由曲线C的极坐标方程ρ-2cosθ-4sinθ=0,化为ρ2-2ρcosθ-4ρsinθ=0,
∴x2+y2-2x-4y=0;
由直线l的参数方程
x=
1
2
t
y=2+
3
2
t
(t是参数)化为y=
3
x+2

(2)把直线l的参数方程代入曲线C的直角坐标方程可得:t2-t-4=0.
点E对应的参数为t=0.设点A,B分别对应的参数为t1,t2
则t1+t2=1,t1t2=-4.
∴|EA|+|EB|=|t1|+|t2|=|t1-t2|=
(t1+t2)2-4t1t2
=
1+16
=
17
点评:本题考查了参数方程极坐标方程化为普通方程、直线参数方程的应用,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
ex
,a≠0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=1时,已知x1<x2,且f(x1)=f(x2),求证:f(x1)>f(2-x2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+x2-x,若对任意x1,x2∈[-1,1],|f(x1)+f(x2)|≤k恒成立,则k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式对?x∈R,ax2-ax+1>0恒成立,若命题p或q为真命题,p且q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)在R上有意义,对于给定的正数K,定义fk(x)=
f(x),f(x)≥k
k,f(x)<k
,取函数f(x)=2+x+e-x,如对任意的x∈R恒有fk(X)=f(x).则K的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
e1
e2
是互相垂直的两个单位向量,若向量
a
=t•
e1
+
e2
与向量
b
=
e1
+t•
e2
是的夹角是钝角,则实数t的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时f(x)<0.
①判断函数f(x)的单调性并证明;
②若f(1)=-2,f(x-1)<-6,试求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足条件:f(0)=1,f(x+1)=f(x)+2x
(Ⅰ)求f(x);
(Ⅱ)讨论二次函数f(x)在闭区间[t,t+1](t∈R)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+φ)(其中φ为实数),若f(x)≤|f(
π
6
)|对x∈r恒成立,且sinφ<0,则f(x)的单调递增区间是
 
;(k∈Z)

查看答案和解析>>

同步练习册答案