精英家教网 > 高中数学 > 题目详情
(   )
D
解:因为m,n是异面直线,那么结合已知条件可知,,故选D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(10)分) 已知正方体是底对角线的交点.
 
求证:(1)∥面;(2). 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图所示,已知M、N分别是AC、AD的中点,BCCD.

(Ⅰ)求证:MN∥平面BCD;
(Ⅱ)求证:平面B CD平面ABC;
(Ⅲ)若AB=1,BC=,求直线AC与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知棱柱的底面是菱形,且面为棱的中点,为线段的中点,
(1)求证:

(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在四棱锥P—ABCD中,侧面PAD、侧面PCD与底成ABCD都垂直,底面是边长为3的正方形,PD=4,则四棱锥P—ABCD的全面积为                  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是直线,a,β是两个不同的平面
A.若∥a,∥β,则a∥βB.若∥a,⊥β,则a⊥β
C.若a⊥β,⊥a,则⊥βD.若a⊥β, ∥a,则⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正方体ABCD-A1B1C1D1中,下列结论正确的是( )
A.A1C1∥ADB.C1D1⊥AB
C.AC1与CD成45°角 D.A1C1与B1C成60°角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥PABCD中,PA⊥平面ABCD,底面ABCD是菱形,PA=AB=2,∠BAD=60°.

(Ⅰ)求证:直线BD⊥平面PAC
(Ⅱ)求直线与平面所成角的正切值;
(Ⅲ)已知M在线段PC上,且BM=DM=,CM=3,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的平面,是不同的直线,给出下列命题:
①若,则
②若,则
③若是异面直线,则相交;
④若,且,则.
其中真命题的个数是
A.1B.2 C.3D.4

查看答案和解析>>

同步练习册答案