精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知椭圆过点,椭圆的离心率为.

1)求椭圆的标准方程;

2)如图,设直线与圆相切与点,与椭圆相切于点,当为何值时,线段长度最大?并求出最大值.

【答案】1;(2时,最大值为1.

【解析】

(1)利用基本量的关系列式求解即可.

(2) 设直线的方程为,根据直线与圆相切可得,再联立直线与椭圆的方程,利用相切则所得的二次方程判别式为0可得,再联立可得.再根据点的坐标结合距离公式以及,在根据基本不等式求解最大值即可.

解:(1)由题,,

,解得.

故椭圆方程为.

2)连接OA,OB,如图所示:

设直线的方程为,

因为直线与圆相切于,

所以,即①,

因为与椭圆相切于点,

,

有两个相等的实数解,

,

,②

由①、②可得,

,由求根公式得,

,

,

∴在直角三角形中,

,

因为,当且仅当时取等号,

所以,

即当时,取得最大值,最大值为1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的不规则几何体中,已知四边形是正方形,四边形是平行四边形,平面平面.

1)证明:

2)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面多边形中,是边长为2的正方形,为等腰梯形,的中点,且,现将梯形沿折叠,使平面平面

1)求证:平面

2)求直线与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左右焦点,点为椭圆上的一动点,面积的最大值为2.

1)求椭圆的方程;

2)直线与椭圆的另一个交点为,点,证明:直线与直线关于轴对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图平面PAC⊥平面ABCACBCPE// BCMN分别是AEAP的中点,且△PAC是边长为2的等边三角形,BC=3PE =2.

1)求证:MN⊥平面PAC

2)求平面PAE与平面ABC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中,D为线段BC(端点除外)上一动点.现将沿线段AD折起至,使二面角的大小为120°,则在点D的移动过程中,下列说法错误的是(

A.不存在点,使得

B.在平面上的投影轨迹是一段圆弧

C.与平面所成角的余弦值的取值范围是

D.线段的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的内角的对边分别为.为线段上一点,,有下列条件:

;②;③.

请从以上三个条件中任选两个,求的大小和的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为α为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为,且在极坐标下点P.

1)求曲线C1的普通方程和曲线C2的直角坐标方程;

2)若曲线C1与曲线C2交于AB两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠病毒是一种通过飞沫和接触传播的变异病毒,为筛查该病毒,有一种检验方式是检验血液样本相关指标是否为阳性,对于份血液样本,有以下两种检验方式:一是逐份检验,则需检验次.二是混合检验,将其中份血液样本分别取样混合在一起,若检验结果为阴性,那么这份血液全为阴性,因而检验一次就够了;如果检验结果为阳性,为了明确这份血液究竟哪些为阳性,就需要对它们再逐份检验,此时份血液检验的次数总共为次.某定点医院现取得4份血液样本,考虑以下三种检验方案:方案一,逐个检验;方案二,平均分成两组检验;方案三,四个样本混在一起检验.假设在接受检验的血液样本中,每份样本检验结果是阳性还是阴性都是相互独立的,且每份样本是阴性的概率为

(Ⅰ)求把2份血液样本混合检验结果为阳性的概率;

(Ⅱ)若检验次数的期望值越小,则方案越“优”.方案一、二、三中哪个最“优”?请说明理由.

查看答案和解析>>

同步练习册答案