【题目】有下列说法: ①函数y=﹣cos2x的最小正周期是π;
②终边在y轴上的角的集合是{α|α= ,k∈Z};
③在同一直角坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④函数f(x)=4sin(2x+ )(x∈R)可以改写为y=4cos(2x﹣ );
⑤函数y=sin(x﹣ )在[0,π]上是减函数.
其中,正确的说法是 .
【答案】①④
【解析】解:对于①、函数y=﹣cos2x的最小正周期是T= =π,故①正确; 对于②、终边在y轴上的角的集合是{α|α= ,k∈Z},故②错误;
对于③、令f(x)=x﹣sinx,f′(x)=1﹣cosx≥0,函数为(﹣∞,+∞)上的增函数,又f(0)=0,
∴在同一直角坐标系中,函数y=sinx的图象和函数y=x的图象有一个公共点,故③错误;
对于④、函数f(x)=4sin(2x+ )=4cos(﹣ +2x+ )=4cos(2x﹣ ),故④正确;
对于⑤、函数y=sin(x﹣ )=﹣cosx,在[0,π]上是增函数,故⑤错误.
∴正确的命题是①④.
所以答案是:①④.
【考点精析】掌握命题的真假判断与应用是解答本题的根本,需要知道两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),当x<0时,f(x)>0,则函数f(x)在[m,n]上有( )
A.最小值f(m)
B.最大值f(n)
C.最小值f(n)
D.最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx,g(x)=x2 . (Ⅰ)求函数h(x)=f(x)﹣x+1的最大值;
(Ⅱ)对于任意x1 , x2∈(0,+∞),且x1<x2 , 是否存在实数m,使mg(x1)﹣mg(x2)﹣x2f(x2)+x1f(x1)恒为正数?若存在,求出m的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题说法正确的是( )
A.命题p:“?x∈R,sinx+cosx= ”,则?p是真命题
B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件
C.命题“?x∈R,使得x2+x+1<0“的否定是:“?x∈R,x2+x+1<0”
D.“a>l”是“y=logax(a>0且a≠1)在(0,+∞)上为增函数”的充要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥E﹣ABCD中,底面ABCD为正方形,EC⊥平面ABCD,AB= ,CE=1,G为AC与BD交点,F为EG中点, (Ⅰ)求证:CF⊥平面BDE;
(Ⅱ)求二面角A﹣BE﹣D的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据所学知识完成题目:
(1)求函数f(x)=2x+4 的值域;
(2)求函数f(x)= 的值域.
(3)函数f(x)=x2﹣2x﹣3,x∈(﹣1,4]的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系与直角坐标系xoy有相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为 (t为参数),曲线C的极坐标方程为ρsin2θ=8cosθ. (I)求C的直角坐标方程;
(Ⅱ)设直线l与曲线C交于A,B两点,求弦长|AB|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义域为R的函数f(x)= 是奇函数.
(1)求实数a的值;
(2)判断并证明f(x)在(﹣∞,+∞)上的单调性;
(3)若f(k3x)+f(3x﹣9x+1)>0对任意x≥0恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=ax3﹣bx+4,当x=2时,函数f(x)有极值为 , (Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com