精英家教网 > 高中数学 > 题目详情

在数列{an}中,已知a1=1,a2=3,an+2= 3an+1- 2an.
(1)证明数列{ an+1- an}是等比数列,并求数列{an}的通项公式;
(2)设bn=,{bn}的前n项和为Sn,求证

⑴an=a1+(a2-a1)+ (a3-a2)+…+(an- an-1)=1+2+22+…+2n-1==2n-1;
⑵bn==log22n=n,Sn=,
,
所以
=2<2.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(文科只做(1)(2)问,理科全做)
是函数图象上任意两点,且,已知点的横坐标为,且有,其中且n≥2,
(1) 求点的纵坐标值;
(2) 求
(3)已知,其中,且为数列的前n项和,若对一切都成立,试求λ的最小正整数值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列{ an}的前n项和为Sn,且Sn=2an-l;数列{bn}满足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1.
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)求数列的前n项和T.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.

 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列满足:,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)数列{an}满足a1=1,an=an-1+1  (n≥2)
⑴ 写出数列{an}的前5项;
⑵ 求数列{an}的通项公式。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

数列中,若,则的值为(  )

A.-1B.C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

数列……的一个通项公式为(     ).

A. B.
C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),f (an),(n∈N)是首项为m2,公比为m的等比数列.
(1)求证:数列{an}是等差数列;
(2)若bnan f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn
(3)若cnf(an) lg f (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

在数列{an}中,已知a1=2,a2=7,an+2等于anan+1(n∈N*)的个位数,则a2013的值是(  )

A.8B.6C.4D.2

查看答案和解析>>

同步练习册答案