精英家教网 > 高中数学 > 题目详情

已知函数
(1)若函数处取得极值,求的值;
(2)若函数的图象上存在两点关于原点对称,求的范围.

(1);(2).

解析试题分析:本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值和最值等基础知识,考查学生的分析问题解决问题的能力、转化能力和函数思想.第一问,由于处取得极值,所以的根,所以对求导,解,得出a的值,但是需要验证是否符合题意;第二问,先将“的图象上存在两点关于原点对称”转化为“存在图象上一点,使得的图象上”,即转化为“同时成立”,联立消参,即转化为“,即关于的方程在内有解”,下面证明有交点.
试题解析:(1)当时,   2分
处取得极值
,即
解得:,经验证满足题意,∴.            5分
的图象上存在两点关于原点对称,
即存在图象上一点
使得的图象上
则有 
                         8分
化简得:,即关于的方程在内有解                   9分
,则

∴当时,;当时,
上为减函数,在上为增函数
,且时,时,
值域为                                             11分
时,方程内有解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若函数上是增函数,求实数的取值范围;
(2)若函数上的最小值为3,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为实数.
(1)当时,求函数在区间上的最大值和最小值;
(2)若对一切的实数,有恒成立,其中的导函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其导函数的图象经过点,如图所示.
(1)求的极大值点;
(2)求的值;
(3)若,求在区间上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上有极大值
(1)求实常数m的值.
(2)求函数在区间上的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,当时,有极大值.
(1)求的值;
(2)求函数的极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知某工厂生产件产品的成本为(元),
问:(1)要使平均成本最低,应生产多少件产品?
(2)若产品以每件500元售出,要使利润最大,应生产多少件产品?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若存在过点的直线与曲线都相切,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(其中为常数).
(1)如果函数有相同的极值点,求的值;
(2)设,问是否存在,使得,若存在,请求出实数的取值范围;若不存在,请说明理由.
(3)记函数,若函数有5个不同的零点,求实数的取值范围.

查看答案和解析>>

同步练习册答案