精英家教网 > 高中数学 > 题目详情
设椭圆的中心为坐标原点O,焦点在x轴上,焦距为2,F为右焦点,B1为下顶点,B2为上顶点,SB1FB2=1
(I)求椭圆的方程;
(Ⅱ)若直线l同时满足下列三个条件:①与直线B1F平行;②与椭圆交于两个不同的点P、Q;③S△POQ=
2
3
,求直线l的方程.
(Ⅰ)设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0)

由题意知,2c=2,所以c=1.
SB1FB2=1,得
1
2
•2b•1=1
,所以b=1,
从而a2=b2+c2=12+12=2.
所以所求椭圆方程为
x2
2
+y2=1

(Ⅱ)设满足条件的直线为l.
因为直线B1F的斜率等于1,lB1F,故可设l的方程为y=x+m.
x2
2
+y2=1
y=x+m
,得3x2+4mx+2m2-2=0.
由题意,△=16m2-12(2m2-2)>0,解得m2<3,
x1+x2=-
4m
3
x1x2=
2m2-2
3

所以,|PQ|=
2
|x1-x2|=
2
(x1-x2)2-4x1x2

=
2
(-
4
3
m)2-
4(2m2-2)
3
=
4
3-m2
3

点O到直线l的距离为d=
|m|
2

S△POQ=
1
2
•d•|PQ|=
1
2
|m|
2
4
3-m2
3

=
2
|m|•
3-m2
3
=
2
3

得m4-3m2+2=0.
解得m2=1或m2=2,所以m=±1或m=±
2
.满足m2<3,
但当m=-1时,直线y=x-1与B1F重合,故舍去.
所以,存在满足条件的直线l,这样的直线共3条,其方程为y=x+1,y=x-
2
,y=x+
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C过点P(1,
3
2
),两个焦点分别为F1(-1,0),F2(1,0).
(1)求椭圆C的方程;
(2)过点F1的直线交椭圆于A、B两点,求线段AB的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过(2,0)点且倾斜角为60°的直线与椭圆
x2
5
+
y2
3
=1
相交于A,B两点,则AB中点的坐标为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线y=kx-1与双曲线x2-y2=4没有公共点,则实数k的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
4
+
y2
3
=1
和抛物线C2:y2=2px(p>0),过点M(1,0)且倾斜角为
π
3
的直线与抛物线交于A、B,与椭圆交于C、D,当|AB|:|CD|=5:3时,求p的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,以
3
2
为离心率的椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右顶点分别为A和B,点P是椭圆位于x轴上方的一点,且△PAB的面积最大值为2.
(Ⅰ)求椭圆方程;
(Ⅱ)设点Q是椭圆位于x轴下方的一点,直线AP、BQ的斜率分别为k1,k2,若k1=7k2,设△BPQ与△APQ的面积分别为S1,S2,求S1-S2的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(-1,
3
2
)
是椭圆E:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(1)求椭圆E的方程;
(2)设A、B是椭圆E上两个动点,是否存在λ,满足
PA
+
PB
PO
(0<λ<4,且λ≠2),且M(2,1)到AB的距离为
5
?若存在,求λ值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
2
,F1,F2分别是椭圆的左、右焦点,过点F2与x轴不垂直的直线l交椭圆于A、B两点,则△ABF1的周长为4
2

(1)求椭圆的方程;
(2)若C(
1
3
,0),使得|AC|=|BC|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知焦点在x轴上的椭圆
x2
20
+
y2
b2
=1(b>0)
经过点M(4,1),直线l:y=x+m交椭圆于A,B两不同的点.
(1)求该椭圆的标准方程;
(2)求实数m的取值范围;
(3)是否存在实数m,使△ABM为直角三角形,若存在,求出m的值,若不存,请说明理由.

查看答案和解析>>

同步练习册答案