精英家教网 > 高中数学 > 题目详情
如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C. 
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
分析:(I)当k1=1时,点C在y轴上,且C(0,a),利用中点坐标公式即可得出点B的坐标,再代入椭圆的方程即可得到a,b的关系,再利用斜率计算公式e=
c
a
=
1-
b2
a2
即可得出;
(II)设椭圆的作焦点为F1,由椭圆的定义可知:|BF1|+|BF2|=2a,即已知|BA|+|BF2|=2a,即可得出|BF1|=|BA|,则点B在线段AF1的垂直平分线上,可得点B的横坐标,再利用斜率计算公式得到b,a的关系,把点B的横坐标代入椭圆的方程即可得到纵坐标,再利用斜率计算公式即可得出k1
(III)直线BD过定点(a,0).设P(a,0),B(xB,yB),则点B的坐标满足椭圆方程.利用斜率计算公式可得kAD•kPB=
a2
b2
k1kPB
=
a2
b2
yB
xB+a
yB
xB-a
,只要证明kAD•kPB=-1,而PD⊥AD,即可得到三点P,B,D共线,即直线BD过定点P(a,0).
解答:解:(I)当k1=1时,点C在y轴上,且C(0,a),则B(-
a
2
a
2
)

由点B在椭圆上,得
(-
a
2
)2
a2
+
(
a
2
)2
b2
=1
,化为
b2
a2
=
1
3

e=
c
a
=
1-
b2
a2
=
6
3

(II)设椭圆的作焦点为F1,由椭圆的定义可知:|BF1|+|BF2|=2a,又|BA|+|BF2|=2a,
∴|BF1|=|BA|,则点B在线段AF1的垂直平分线上,
xB=-
a+c
2

e=
c
a
=
1
2
,∴c=
1
2
a
b=
3
2
a

xB=-
3
4
a
,代入椭圆方程得yB
7
4
b
=±
21
8
a

k1=
yB
xB+a
=±
21
2

(III)直线BD过定点(a,0),证明如下:
设P(a,0),B(xB,yB),则
x
2
B
a2
+
y
2
B
b2
=1
(a>b>0).
则kAD•kPB=
a2
b2
k1kPB
=
a2
b2
yB
xB+a
yB
xB-a
=
a2
b2
y
2
B
x
2
B
-a2
=
a2
b2
×(-
b2
a2
)=-1

∴PB⊥AD,又PD⊥AD,
∴三点P,B,D共线,即直线BD过定点P(a,0).
点评:本题综合考查了椭圆的定义、标准方程及其性质、中点坐标公式、线段的垂直平分线、圆的性质、相互垂直的直线的斜率关系、三点共线等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力、计算能力.
练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年广东省广州市高三年级调研测试理科数学试卷(解析版) 题型:解答题

如图,已知椭圆的方程为,双曲线的两条渐近线为.过椭圆的右焦点作直线,使,又交于点,设与椭圆的两个交点由上至下依次为.

(1)若的夹角为,且双曲线的焦距为,求椭圆的方程;

(2)求的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省广州市海珠区高二(下)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知椭圆E1方程为,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C. 
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省广州市七区联考高二(下)期末数学试卷(理科)(解析版) 题型:解答题

如图,已知椭圆E1方程为,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C. 
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆的方程为是它的下顶点,是右焦点,的延长线与椭圆及其右准线分别相交于两点,若点恰好为中点,则此椭圆的离心率为__________

查看答案和解析>>

同步练习册答案