精英家教网 > 高中数学 > 题目详情
13.已知全集U=R,集合M=$\left\{{x\left|{\frac{2-x}{x+3}}\right.<0}\right\}$,则∁RM={x|-3≤x≤2}.

分析 根据补集的定义进行求解即可.

解答 解:M=$\left\{{x\left|{\frac{2-x}{x+3}}\right.<0}\right\}$={x|(2-x)(x+3)<0}={x|(x-2)(x+3)>0}={x|x>2或x<-3},
则∁RM={x|-3≤x≤2},
故答案为:{x|-3≤x≤2}

点评 本题主要考查集合的基本运算,根据补集的定义结合分式不等式的解法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.函数f(x)=ln$\frac{3x}{2}$-$\frac{2}{x}$的零点一定位于区间(  )
A.(0,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列各式的值:
(1)$\frac{1+tan75°}{1-tan75°}$;
(2)tan17°+tan28°+tan17°tan28°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若tanα=2,则$\frac{sinα-cosα}{sinα+cosα}$的值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,直线y=kx将抛物线y=x-x2与x轴所围图形分成面积相等的两部分,则k=1-$\frac{\root{3}{4}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为36,焦距为12,则椭圆的方程为(  )
A.$\frac{x^2}{36}+\frac{y^2}{64}=1$B.$\frac{x^2}{100}+\frac{y^2}{64}=1$
C.$\frac{x^2}{36}+\frac{y^2}{64}=1或\frac{x^2}{64}+\frac{y^2}{36}=1$D.$\frac{x^2}{100}+\frac{y^2}{64}=1$或$\frac{x^2}{64}+\frac{y^2}{100}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若角α满足cosα>0,tanα<0,则α为第四象限的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=loga(2-ax)在[0,1]上为减函数,则实数a的取值范围是(  )
A.1<a<2B.$\frac{1}{2}$<a<1C.$\frac{1}{2}$<a<2D.a=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若点A(x1,y1)、B(x2,y2)同时满足一下两个条件:
(1)点A、B都在函数y=f(x)上;
(2)点A、B关于原点对称;
则称点对((x1,y1),(x2,y2))是函数f(x)的一个“姐妹点对”.
已知函数$f(x)=\left\{\begin{array}{l}x-4\;\;\;\;({x≥0})\\{x^2}-2x\;\;({x<0})\;\end{array}\right.$,则函数f(x)的“姐妹点对”是(1,-3),(-1,3).

查看答案和解析>>

同步练习册答案