精英家教网 > 高中数学 > 题目详情

【题目】有一块多边形的花园,它的水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中米,,则这块花园的面积为______平方米.

【答案】

【解析】

按斜二测画直观图的原则,找到四边形的四个顶点在平面直角坐标系下对应的点,即把直观图中的点还原回原图形中,连接后得到原图形,然后利用梯形面积公式求解.

如图,直观图四边形的边轴上,在原平面直角坐标系下在轴上,长度不变.
轴上,在原平面直角坐标系图形中在轴上,且长度为直观图中的2.

在直观图四边形中轴,所以在原平面直角坐标系下轴,长度不变.

所以在原平面直角坐标系中为直角梯形.

在直观图四边形中,过点, 垂足为

则在直观图中,为等腰直角三角形且

所以在原平面直角坐标系中

所以

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若数列同时满足:①对于任意的正整数 恒成立;②对于给定的正整数 对于任意的正整数恒成立,则称数列是“数列”.

(1)已知判断数列是否为“数列”,并说明理由;

(2)已知数列是“数列”,且存在整数,使得 成等差数列,证明: 是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托互联网+”,符合低碳出行的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:

频率分布表

组别

分组

频数

频率

1

8

0.16

2

3

20

0.40

4

0.08

5

2

合计

1)求的值;

2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在(0,+∞)上的增函数,且满足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过点且与直线相切,圆心的轨迹为曲线.

1)求曲线的方程;

2)若是曲线上的两个点且直线的外心,其中为坐标原点,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某镇有一块空地,其中.当地镇政府规划将这块空地改造成一个旅游景点,拟在中间挖一个人工湖,其中MN都在边上,且,挖出的泥土堆放在地带上形成假山,剩下的地带开设儿童游乐场.为安全起见,需在的周围安装防护网.

1)当时,求防护网的总长度;

2)为节省资金投入,人工湖的面积要尽可能小,设,问:当多大时的面积最小?最小面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

1)求的值;

2)若函数的图象在直线上方,求的取值范围;

3)若函数,是否存在实数使得的最小值为?若存在,求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面,底面是正方形,中点.

1)求证:平面

2)求点到平面的距离;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学在研究函数时,给出下面几个结论:

①等式恒成立;

②函数的值域为

③若,则一定

④对任意的,若函数恒成立,则当时,

其中正确的结论是____________(写出所有正确结论的序号).

查看答案和解析>>

同步练习册答案