精英家教网 > 高中数学 > 题目详情

已知函数的图像上两相邻最高点的坐标分别为.
(Ⅰ)求的值;
(Ⅱ)在△ABC中,分别是角A,B,C的对边,且的取值范围.

(1)
(2)

解析试题分析:解:(Ⅰ)
由题意知.                           ………..(4分)
(Ⅱ),
.                        (8分)
…..(10分)
….(12分)
考点:三角函数的图像与性质
点评:解决的关键是对于三角函数的 性质的运用,以及正弦定理的运用,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,其中
(1)若时,求的最大值及相应的的值;
(2)是否存在实数,使得函数最大值是?若存在,求出对应的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,三个内角所对的边分别为的面积等于.
(1)求的值;(6分)
(2)求.(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(Ⅰ)写出函数的最小正周期及单调递减区间;
(Ⅱ)当时,函数的最大值与最小值的和为,求的解析式;
(Ⅲ)将满足(Ⅱ)的函数的图像向右平移个单位,纵坐标不变横坐标变为原来的2
倍,再向下平移,得到函数,求图像与轴的正半轴、直线所围成图形的
面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数f(x)=的周期为,且对一切xR,都有f(x) ;
(1)求函数f(x)的表达式; 
(2)若g(x)=f(),求函数g(x)的单调增区间;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设关于x的函数y=2cos2x﹣2acosx﹣(2a+1)的最小值为f(a),试确定满足的a的值,并对此时的a值求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求值(1)
(2)已知,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(8分)(1)化简:
(2)求证:

查看答案和解析>>

同步练习册答案