【题目】函数f(x)=sin(wx+)(w>0,<)的最小正周期是π,若将该函数的图象向右平移个单位后得到的函数图象关于直线x=对称,则函数f(x)的解析式为( )
A.f(x)=sin(2x+)B.f(x)=sin(2x-)
C.f(x)=sin(2x+)D.f(x)=sin(2x-)
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.
(1)求曲线的极坐标方程和直线的参数方程;
(2)已知直线与曲线交于,满足为的中点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】全国大学生机器人大赛是由共青团中央,全国学联,深圳市人民政府联合主办的赛事,是中国最具影响力的机器人项目,是全球独创的机器人竞技平台.全国大学生机器人大赛比拼的是参赛选手们的能力,坚持和态度,展现的是个人实力以及整个团队的力量.2015赛季共吸引全国240余支机器人战队踊跃报名,这些参赛战队来自全国六大赛区,150余所高等院校,其中不乏北京大学,清华大学,上海交大,中国科大,西安交大等众多国内顶尖高校,经过严格筛选,最终由111支机器人战队参与到2015年全国大学生机器人大赛的激烈角逐之中,某大学共有“机器人”兴趣团队1000个,大一、大二、大三、大四分别有100,200,300,400个,为挑选优秀团队,现用分层抽样的方法,从以上团队中抽取20个团队.
(1)应从大三抽取多少个团队?
(2)将20个团队分为甲、乙两组,每组10个团队,进行理论和实践操作考试(共150分),甲、乙两组的分数如下:
甲:125,141,140,137,122,114,119,139,121,142
乙:127,116,144,127,144,116,140,140,116,140
从甲、乙两组中选一组强化训练,备战机器人大赛.
(i)从统计学数据看,若选择甲组,理由是什么?若选择乙组,理由是什么?
(ii)从乙组中不低于140分的团队中任取两个团队,求至少有一个团队为144分的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中,,,,为的中点,沿将折起,使得点到点位置,且,为的中点,是上的动点(与点,不重合).
(Ⅰ)证明:平面平面垂直;
(Ⅱ)是否存在点,使得二面角的余弦值?若存在,确定点位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是( )
A.甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐
B.甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐
C.乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐
D.乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾评分情况如下表;场内外共有数万名观众参与了评分,组织方将观众评分按照,,分组,绘成频率分布直方图如下:
嘉宾 | ||||||
评分 | 96 | 95 | 96 | 89 | 97 | 98 |
(1)从观众中任取三人,求这三人中恰有1人分数在另2人分数在的概率;
(2)从嘉宾中随机选3人,记3人中分数不低于96分的人数为,求的期望;
(3)嘉宾评分的平均数为,场内外的观众评分的平均数为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、是椭圆的左、右顶点,为椭圆上异于、的一点.
(1)是椭圆的上顶点,且直线与直线垂直,求点到轴的距离;
(2)过点的直线(不过坐标原点)与椭圆交于、两点,且点在轴上方,点在轴下方,若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的短轴长为,离心率为.
(1)求椭圆的方程;
(2)若动直线与椭圆有且仅有一个公共点,分别过两点作,垂足分别为,且记为点到直线的距离, 为点到直线的距离,为点到点的距离,试探索是否存在最大值.若存在,求出最大值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com