精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,a1=1,且3an+1+2Sn=3(n∈N).
(I) 求a2,a3的值,并求数列{an}的通项公式;
(II)若对任意正整数n,k≤Sn恒成立,求实数k的最大值.
分析:(I)利用a1=1,且3an+1+2sn=3(n∈N),令n=1、2,可求a2,a3的值,n≥2时,3an+2sn-1=3与条件相减,可得数列{an}是首项为1,公比为
1
3
的等比数列,从而可求数列{an}的通项公式;
(II)求出等比数列的和,求出数列和的最小值,即可得到实数k的最大值.
解答:解:(I)∵a1=1,且3an+1+2sn=3(n∈N
∴当n=1时,3a2+2a1=3,∴a2=
1
3
…(2分)
∴当n=2时,3a3+2(a1+a2)=3,∴a3=
1
9
…(3分)
∵3an+1+2sn=3①
∴当n≥2时,3an+2sn-1=3  ②
由①-②,得3an+1-3an+2an=0…(5分)
an+1
an
=
1
3
(n≥2)

又∵a1=1,a2=
1
3
,…(7分)
∴数列{an}是首项为1,公比为
1
3
的等比数列.
an=a1qn-1=
1
3n-1
                        …(8分)
(II)由(I)知Sn=
3
2
[1-(
1
3
)
n
]
…(9分)
由题意可知,对于任意的正整数n,恒有k≤
3
2
[1-(
1
3
)
n
]
…(10分)
令f(n)=
3
2
[1-(
1
3
)
n
]
,则函数为单调增函数,∴当n=1时,f(n)min=1                     …(12分)
∴必有k≤1,即实数k的最大值为1.…(13分)
点评:本题考查数列的通项与求和,考查恒成立问题,解题的关键是利用等比数列的定义,确定函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案