【题目】已知中心在原点,焦点在轴上的椭圆过点,离心率为.
(1)求椭圆的方程;
(2)直线过椭圆的左焦点,且与椭圆交于两点,若的面积为,求直线的方程.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线∶和圆∶,是直线上一点,过点作圆的两条切线,切点分别为.
(1)若,求点坐标;
(2)若圆上存在点,使得,求点的横坐标的取值范围;
(3)设线段的中点为,与轴的交点为,求线段长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球.
(1)若从中一次性(任意)摸出2个球,求恰有一个黑球和一个红球的概率;
(2)若从中任取一个球给小朋友甲,然后再从中任取一个球给小朋友乙,求甲、乙两位小朋友拿到的球中恰好有一个黑球的概率.
(3)若从中连续取两次,每次取一球后放回,求取出的两个球恰好有一个黑球的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,一单位圆的圆心的初始位置在,此时圆上一点P的位置在,圆在x轴上沿正向滚动.当圆滚动到圆心位于时,的坐标为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,(其中, 为自然对数的底数, ……).
(1)令,若对任意的恒成立,求实数的值;
(2)在(1)的条件下,设为整数,且对于任意正整数, ,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在原点的双曲线的右焦点为,直线与双曲线的一个交点的横坐标为.
(1)求双曲线的标准方程;
(2)过点,倾斜角为的直线与双曲线相交于、两点,为坐标原点,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 与都是正三角形, , .
(Ⅰ)求证: ;
(Ⅱ)若,试求的值,使直线与所成角的正弦值为;
(Ⅲ)若,试写出三棱锥与三棱锥的体积比.(不要求写求解过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,底面ABC,点D,E分别为棱PA,PC的中点,M是线段AD的中点,N是线段BC的中点,,.
Ⅰ求证:平面BDE;
Ⅱ求直线MN到平面BDE的距离;
Ⅲ求二面角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为( )
(附:对于一组数据,,…,,其回归直线的斜率的最小二乘估计值为.参考数值:,)
A. 9.4元 B. 9.5元 C. 9.6元 D. 9.7元
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com