精英家教网 > 高中数学 > 题目详情
20.若数列{an}中,a1=2,且an=$\sqrt{3+{a}_{n-1}^{2}}$(n≥2),求通项公式an

分析 an=$\sqrt{3+{a}_{n-1}^{2}}$(n≥2),可得${a}_{n}^{2}-{a}_{n-1}^{2}$=3,an>0.利用等差数列的通项公式即可得出.

解答 解:∵an=$\sqrt{3+{a}_{n-1}^{2}}$(n≥2),
∴${a}_{n}^{2}-{a}_{n-1}^{2}$=3,an>0.
∴数列$\{{a}_{n}^{2}\}$是等差数列,首项为4,公差为3.
∴${a}_{n}^{2}$=4+3(n-1)=3n+1,
∴an=$\sqrt{3n+1}$.

点评 本题考查了等差数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知$x=\frac{π}{6}$是函数$f(x)=({asinx+cosx})cosx-\frac{1}{2}$图象的一条对称轴.
(1)求a的值;
(2)求函数f(x)的单调增区间;
(3)作出函数f(x)在x∈[0,π]上的图象简图(列表,画图).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知△ABC是锐角三角形,它的三个内角∠A、∠B、∠C的对边分别为a、b、c,满足b2=a2+c2-4bccos2B,且b≠c.
(1)求证:A=2B;
(2)若b=1,试求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=4m(cos2(x+$\frac{π}{6}$)+$\frac{\sqrt{3}}{2}$sin2x)+n-2m(m≠0).
(1)求函数f(x)的最小正周期T;
(2)若m=1,函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求n;
(3)若n=1,函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最小值是1-$\sqrt{3}$,求m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{OA}$=(k,12),$\overrightarrow{OB}$=(4,5),$\overrightarrow{OC}$=(10,k),求:
(1)当k为何值时,A,B,C三点共线?
(2)当k为何值时,∠ABC为直角?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=lg(x+$\sqrt{{x}^{2}+1}$).
(1)求f(x)的定义域;
(2)求f(x)的反函数f-1(x);
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2cos2$\frac{x}{2}$+sinx+sin2x(x∈R).
(1)求函数f(x)的最大值,并求此时x的值;
(2)已知△ABC中,内角A,B,C的对边分别为a,b,c,若f(A+$\frac{π}{4}$)=2且a=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,点O满足$\overrightarrow{OA}$•$\overrightarrow{AB}$=$\overrightarrow{OA}$•$\overrightarrow{AC}$,则点O在△ABC的(  )上.
A.角平分线B.中线C.中垂线D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过点A(4,-a)和点B(6,b)的直线与直线y=-x+m垂直,则以AB为直径的圆的方程可以是(  )
A.x2+y2-10x+17=0B.x2+y2-2y-1=0
C.x2+y2-8x-4y+12=0D.x2+y2-10x-2y+24=0

查看答案和解析>>

同步练习册答案