精英家教网 > 高中数学 > 题目详情
10.若f(cosx)=-1-2cos3x,求f(sinx).

分析 由已知条件利用三角函数的诱导公式和函数的性质求解.

解答 解:∵f(cosx)=-1-2cos3x,
∴f(sinx)=f(cos($\frac{π}{2}$-x))
=1-2cos($\frac{3π}{2}-3x$)
=1+2sin3x.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意三角函数的诱导公式和函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$,$\overrightarrow{d}$,$\overrightarrow{e}$如图所示,解答下列各题:
(1)用$\overrightarrow{a}$,$\overrightarrow{d}$,$\overrightarrow{e}$表示$\overrightarrow{DB}$;
(2)用$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{DB}$;
(3)用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{e}$表示$\overrightarrow{EC}$;
(4)用$\overrightarrow{d}$,$\overrightarrow{c}$表示$\overrightarrow{EC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\frac{{2}^{x}}{1+{2}^{x}}$,那么f-1($\frac{2}{3}$)=(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.根据条件利用单位圆写出θ的取值范围:
(1)cosθ<$\frac{\sqrt{2}}{2}$;
(2)$\frac{1}{2}$≤sinθ<$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.将直线l:y=2x绕点P(1,-2)旋转180°得到直线l′,则直线l′的方程是2x-y-8=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1,矩形APCD中,AD=2AP,B为PC的中点,将△APB折沿AB折起,使得PD=PC,如图2.
(1)若E为PD中点,证明:CE∥平面APB;
(2)证明:平面APB⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)是R上的奇函数,且f(-1)=0,若不等式$\frac{{x}_{1}f({x}_{1})-{x}_{2}f({x}_{2})}{{x}_{1}-{x}_{2}}$<0对区间(-∞,0)内任意两个不相等的实数x1、x2恒成立,则不等式2xf(3x)<0的解集是(-$\frac{1}{3}$,0)∪(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知点F(c,0)(c>0)是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的右焦点,F关于直线y=$\sqrt{3}$x的对称点A也在该椭圆上,则该椭圆的离心率是(  )
A.$\sqrt{3}$+2B.$\sqrt{3}$-1C.-$\sqrt{3}$+1D.-$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)满足f(x-1)=2x+1,若f(a)=3a,则a=3.

查看答案和解析>>

同步练习册答案