精英家教网 > 高中数学 > 题目详情
已知椭圆的方程为,过椭圆的右焦点且与x轴垂直的直线与椭圆交于P、Q两点,椭圆的右准线与x轴交于点M,若为正三角形,则椭圆的离心率等于  ▲   
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
上的两点,
满足,椭圆的离心率短轴长为2,0为坐标原点.
(1)求椭圆的方程;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设分别为椭圆C:的左右两个焦点,椭圆上的点)到两点的距离之和等于4,设点
(1)求椭圆的方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,右焦点为是椭圆上三个不同的点,则“成等差数列”是“”的( )
A.充要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知椭圆:的右焦点为,离心率为.
(Ⅰ)求椭圆的方程及左顶点的坐标;
(Ⅱ)设过点的直线交椭圆两点,若的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)如图,已知椭圆焦点为,双曲线,设是双曲线异于顶点的任一点,直线与椭圆的交点分别为
1.      设直线的斜率分别为,求的值;
2.      是否存在常数,使得恒成立?若存在,试求出的值;若不存在,请说明理由。
3.       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆的离心率为,直线过点,且与椭圆相切于点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过点的直线与椭圆相交于不同的两点,使得
?若存在,试求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线,两焦点为,过轴的垂线交双曲线于两点,且内切圆的半径为,则此双曲线的离心率为  ▲   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率是,则双曲线=1的离心率是______。

查看答案和解析>>

同步练习册答案