【题目】已知二次函数满足
(1)求函数的解析式;
(2)令
若函数在上是单调函数,求实数m的取值范围;
求函数在的最小值.
【答案】(1)f(x)=﹣x2+2x+15(2)①m≤0,或m≥2②见解析
【解析】
(1)据二次函数的形式设出f(x)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.
(2)函数g(x)的图象是开口朝上,且以x=m为对称轴的抛物线,
①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;
②分当m≤0时,当0<m<2时,当m≥2时三种情况分别求出函数的最小值,可得答案.
解:(1)设f(x)=ax2+bx+c,
∵f(2)=15,f(x+1)﹣f(x)=﹣2x+1,
∴4a+2b+c=15;a(x+1)2+b(x+1)+c﹣(ax2+bx+c)=﹣2x+1;
∴2a=﹣2,a+b=1,4a+2b+c=15,解得a=﹣1,b=2,c=15,
∴函数f(x)的表达式为f(x)=﹣x2+2x+15;
(2)∵g(x)=(2﹣2m)x﹣f(x)=x2﹣2mx﹣15的图象是开口朝上,且以x=m为对称轴的抛物线,
①若函数g(x)在x∈[0,2]上是单调函数,则m≤0,或m≥2;
②当m≤0时,g(x)在[0,2]上为增函数,当x=0时,函数g(x)取最小值﹣15;
当0<m<2时,g(x)在[0,m]上为减函数,在[m,2]上为增函数,当x=m时,函数g(x)取最小值﹣m2﹣15;
当m≥2时,g(x)在[0,2]上为减函数,当x=2时,函数g(x)取最小值﹣4m﹣11;
∴函数g(x)在x∈[0,2]的最小值为
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是
A. y与x具有正的线性相关关系
B. 回归直线过样本点的中心(,)
C. 若该大学某女生身高增加1cm,则其体重约增加0.85kg
D. 若该大学某女生身高为170cm,则可断定其体重比为58.79kg
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)设个正数满足(且).
(1)当时,证明:;
(2)当时,不等式也成立,请你将其推广到(且)个正数的情形,归纳出一般性的结论并用数学归纳法证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.
(1)求椭圆的方程;
(2)设直线与椭圆交于,两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左,右焦点分别为, ,离心率为, 是椭圆上的动点,当时, 的面积为.
(1)求椭圆的标准方程;
(2)若过点的直线交椭圆于, 两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设递增数列共有项,定义集合,将集合中的数按从小到大排列得到数列;
(1)若数列共有4项,分别为,,,,写出数列的各项的值;
(2)设是公比为2的等比数列,且,若数列的所有项的和为4088,求和的值;
(3)若,求证:为等差数列的充要条件是数列恰有7项;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com