【题目】已知Sn表示数列{an}的前n项和,若对任意的n∈N*满足an+1=an+a2 , 且a3=2,则S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015
科目:高中数学 来源: 题型:
【题目】甲、乙两校各有3名教师报名支教,期中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 的反函数为 ,等比数列{an}的公比为2,若 ,则 =( )
A.21004×2016
B.21005×2015
C.21005×2016
D.21008×2015
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在圆上任取一点,过点向轴作垂线段,垂足为,当点在圆上运动时,线段的中点的轨迹为.
(1)求曲线的方程;
(2)过点(0,-2)作直线与交于两点,(O为原点),求三角形面积的最大值,并求此时的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=(1﹣m)lnx++nx(m,n是常数).
(1)若m=0,且f(x)在(1,2)上单调递减,求n的取值范围;
(2)若m>0,且n=﹣1,求f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知 为等差数列,公差 ( ),且( )
(1)求证:当 取不同自然数时,此方程有公共根;
(2)若方程不同的根依次为 , , , …, , …,求证:数列 为等差数列。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一列火车从重庆驶往北京,沿途有n个车站(包括起点站重庆和终点站北京).车上有一邮政车厢,每停靠一站便要卸下火车已经过的各站发往该站的邮袋各1个,同时又要装上该站发往以后各站的邮袋各1个,设从第k站出发时,邮政车厢内共有邮袋ak个(k=1,2,…,n).
(1)求数列{ak}的通项公式;
(2)当k为何值时,ak的值最大,求出ak的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线ax﹣by+2=0(a>0,b>0)和函数f(x)=ax+1+1(a>0且a≠1)的图象恒过同一个定点,则当 + 取最小值时,函数f(x)的解析式是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,仅在北京地区每天就有500万单快递等待派送,近5万多名快递员奔跑在一线,快递网点人员流动性也较强,各快递公司需要经常招聘快递员,保证业务的正常开展.下面是50天内甲、乙两家快递公司的快递员的每天送货单数统计表:
送货单数 | 30 | 40 | 50 | 60 | |
天数 | 甲 | 10 | 10 | 20 | 10 |
乙 | 5 | 15 | 25 | 5 |
已知这两家快递公司的快递员的日工资方案分别为:甲公司规定底薪元,每单抽成元;乙公司规定底薪元,每日前单无抽成,超过单的部分每单抽成元.
(1)分别求甲、乙快递公司的快递员的日工资(单位:元)与送货单数的函数关系式;
(2)若将频率视为概率,回答下列问题:
①记甲快递公司的快递员的日工资为(单位:元),求的分布列和数学期望;
②小赵拟到甲、乙两家快递公司中的一家应聘快递员的工作,如果仅从日收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com