精英家教网 > 高中数学 > 题目详情
4.在用二分法求方程x3-x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可判定该根所在区间为(  )
A.(1,1.25)B.(1,1.5)C.(1.5,2)D.(1.25,1.5)

分析 由题意构造函数f(x)=x3-x-1,求方程x3-2x-1=0的一个近似解,就是求函数在某个区间内有零点,因此把x=1,2,1.5,代入函数解析式,分析函数值的符号是否异号即可.

解答 解:令f(x)=x3-2x-1,
则f(1)=-1<0,f(2)=5>0,f(1.5)=0.875>0,
由f(1)f(1.5)<0知根所在区间为(1,1.5).
故选:B.

点评 此题是个基础题.考查二分法求方程的近似解,以及方程的根与函数的零点之间的关系,体现了转化的思想,同时也考查了学生分析解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.利用诱导公式求下列各式的值
(1)sin120°;      
(2)cos135°;
(3)tan$\frac{2π}{3}$;       
(4)cos(-$\frac{19π}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=\frac{px+q}{{{x^2}+1}}$(p,q为常数)是定义在(-1,1)上的奇函数,且$f(1)=\frac{1}{2}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)判断并用定义证明f(x)在(-1,1)上的单调性;
(Ⅲ)解关于x的不等式f(2x-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.记等差数列的前n项和为Sn,若S3=6,S5=25,则该数列的公差d=(  )
A.2B.3C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.方程lgx=4-x的根x∈(k,k+1),k∈Z,则k=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=3$,求x+x-1的值;
(2)计算${(\frac{1}{8})^{-\frac{1}{3}}}-{3^{{{log}_3}2}}({log_3}4)•({log_8}27)+2{log_{\frac{1}{6}}}\sqrt{3}-{log_6}2$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.直线l:y-3=k(x+1)必经过定点(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\frac{{4}^{x}}{{4}^{x}+2}$,则f($\frac{1}{11}$)+f($\frac{2}{11}$)+…+f($\frac{10}{11}$)的值为(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.对任意的实数m,直线y=mx+n-1与椭圆x2+4y2=1恒有公共点,则n的取值范围是(  )
A.$[\frac{1}{2},\frac{3}{2}]$B.$(\frac{1}{2},\frac{3}{2})$C.$[-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}]$D.$({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$

查看答案和解析>>

同步练习册答案