精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcosθ+sinθ)=8

1)求曲线C和直线l的直角坐标方程;

2)若射线m的极坐标方程为θρ≥0),设mC相交于点M(非坐标原点),ml相交于点N,点P60),求△PMN的面积.

【答案】1y22x.(2

【解析】

1)消参即可得曲线C的直角坐标方程,由极坐标方程和直角坐标方程转化公式即可得直线l的直角坐标方程;

2)利用极坐标方程求得,进而可得和点P(60)到直线MN的距离,利用即可得解.

1)曲线C的参数方程为t为参数),消去参数可得y2=2x

直线l的极坐标方程为ρ(cosθ+sinθ)=8.转换为直角坐标方程为

2)曲线C的极坐标方程为ρ2sin2θ2ρcosθ,将代入得到

代入ρ(cosθ+sinθ)=8得到

所以|MN|=

P(60)到直线MNx的距离d

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十九大报告要求,确保到2020年我国现行标准下农村贫困人口实现脱贫,贫困县全部摘帽,解决区域性整体贫困,做到脱真贫、真脱贫.某贫困地区扶贫办积极贯彻落实国家精准扶贫的政策要求,带领农村地区人民群众脱贫奔小康,扶贫办计划为某农村地区购买农机机器,假设该种机器使用三年后即被淘汰.农机机器制造商对购买该机器的客户推出了两种销售方案:

方案一:每台机器售价7000元,三年内可免费保养2次,超过2次每次收取保养费200元;

方案二:每台机器售价7050元,三年内可免费保养3次,超过3次每次收取保养费100.

扶贫办需要决策在购买机器时应该选取那种方案,为此搜集并整理了50台这种机器在三年使用期内保养的次数,得下表:

保养次数

0

1

2

3

4

5

台数

1

10

19

14

4

2

x表示1台机器在三年使用期内的保养次数.

1)用样本估计总体的思想,求x不超过3”的概率;

2)按照两种销售方案,分别计算这50台机器三年使用期内的总费用(总费用=售价+保养费),以每台每年的平均费用作为决策依据,扶贫办选择那种销售方案购买机器更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若在点处的切线为,求的值;

(2)求的单调区间;

(3)若,求证:在时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l过抛物线Cy24x的焦点F且与C交于Ax1y1),Bx2y2)两点,则y1y2_____.过AB两点分别作抛物线C的准线的垂线,垂足分别为PQ,准线与x轴的交点为M,四边形FAPM的面积记为S1,四边形FBQM的面积记为S2,则S1S23|AF||BF|_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC的内角ABC的对边分别为abc,且asinBbcosA+abcosC+ccosB

1)求A

2)若a,点DBC上,且ADAC,当△ABC的周长取得最大值时,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象上有且仅有两个不同的点关于直线的对称点在的图象上,则实数的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是抛物线的焦点,过点且与坐标轴不垂直的直线交抛物线于两点,交抛物线的准线于点,其中.过点轴的垂线交抛物线于点,直线交抛物线于点.

1)求的值;

2)求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】201913日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就,实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日点的轨道运行.点是平衡点,位于地月连线的延长线上.设地球质量为M,月球质量为M,地月距离为R点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:

.

,由于的值很小,因此在近似计算中,则r的近似值为

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数.

(Ⅰ)若为单调递增函数,求实数的取值范围;

(Ⅱ)当存在极小值时,设极小值点为,求证:

查看答案和解析>>

同步练习册答案